We theoretically investigate the effect of electronic correlations (including spin and Coulomb correlations) on magnetotransport through a parallel double quantum dot coupled to ferromagnetic leads. Within the framework of the generalized master equation, we analyze the current, differential conductance and tunnel magnetoresistance versus bias for different electron correlations. Our results reveal that spin correlations can induce a giant tunnel magnetoresistance, while Coulomb correlations can lead to the occurrence of negative tunnel magetoresistance and negative differential conductance, and the relevant underlying physics of this problem is discussed.
We theoretically investigate the effect of electronic correlations (including spin and Coulomb correlations) on magnetotransport through a parallel double quantum dot coupled to ferromagnetic leads. Within the framework of the generalized master equation, we analyze the current, differential conductance and tunnel magnetoresistance versus bias for different electron correlations. Our results reveal that spin correlations can induce a giant tunnel magnetoresistance, while Coulomb correlations can lead to the occurrence of negative tunnel magetoresistance and negative differential conductance, and the relevant underlying physics of this problem is discussed.
FANG Dong-Kai**, WU Shao-Quan, ZOU Cheng-Yi, ZHAO Guo-Ping. Effect of Electronic Correlations on Magnetotransport through a Parallel Double Quantum Dot[J]. 中国物理快报, 2012, 29(3): 37303-037303.
FANG Dong-Kai, WU Shao-Quan, ZOU Cheng-Yi, ZHAO Guo-Ping. Effect of Electronic Correlations on Magnetotransport through a Parallel Double Quantum Dot. Chin. Phys. Lett., 2012, 29(3): 37303-037303.
[1] Maekawa S and Shinjo T 2002 Spin Dependent Transport in Magnetic Nanostructures (New York: Taylor & Francis) [2] Zutic I et al 2004 Rev. Mod. Phys. 76 323 [3] Loss D and DiVincenzo D P 1998 Phys. Rev. A 57 120 [4] Hanson R and Burkard G 2007 Phys. Rev. Lett. 98 050502 [5] Cottet A et al 2004 Phys. Rev. Lett. 92 206801 [6] Weymann I et al 2005 Phys. Rev. B 72 115334 [7] Goldhaber Gordon D et al 1998 Nature 391 156 Cronenwett S M et al 1998 Science 281 540 [8] Sun Q et al 2001 Phys. Rev. Lett. 87 176601 Yang H et al 2008 Nano Lett. 8 340 [9] Yan C H et al 2006 Chin. Phys. Lett. 23 1888 Yang F B et al 2007 Chin. Phys. Lett. 24 2056 Huang R et al 2006 Chin. Phys. Lett. 23 1892[10] Hamaya K et al 2009 Phys. Rev. Lett. 102 236806 [11] Martinek J et al 2003 Phys. Rev. Lett. 91 127203 Choi M S et al 2004 Phys. Rev. Lett. 92 056601[12] Pasupathy A N et al 2004 Science 306 86 [13] Buttiker M 1990 Phys. Rev. Lett. 65 2901 Wu S Q and Wang S J 2003 Chin. Phys. Lett. 20 1574[14] Trocha P and Barnaś J 2007 Phys. Rev. B 76 165432 [15] Hornberger R et al 2008 Phys. Rev. B 77 245313 [16] Weymann I 2007 Phys. Rev. B 75 195339 [17] Holleitner A W et al 2001 Phys. Rev. Lett. 87 256802 McClure D T et al 2007 Phys. Rev. Lett. 98 056801[18] Chen X W et al 2004 Chin. Phys. Lett. 21 911 Chen J F et al 2010 Chin. Phys. Lett. 27 047201[19] Blum K 1996 Density Matrix Theory and Applications (New York: Plenum)