摘要The maximum refrigeration power dependence on the doping density in the p-BaTiO3/BaTiO3/SrTiO3/BaTiO3/ n-BaTiO3 system and in the p-AlGaAs/AlGaAs/GaAs/AlGaAs/n-AlGaAs system is obtained respectively based on the opto-thermionic refrigeration model. The results show that the maximum refrigeration power in the p-BaTiO3/BaTiO3/SrTiO3/BaTiO3/n-BaTiO3 system increases dramatically with the increase of doping density from 1.0×1018 cm-3 to 5.0×1019 cm-3 while that in the p-AlGaAs/AlGaAs/GaAs/AlGaAs/n-AlGaAs system is nearly a constant. It is found that the different Auger coefficients and the competition between radiative power and dissipation power lead to the different behavior of the maximum refrigeration power dependence on the doping density of the two systems.
Abstract:The maximum refrigeration power dependence on the doping density in the p-BaTiO3/BaTiO3/SrTiO3/BaTiO3/ n-BaTiO3 system and in the p-AlGaAs/AlGaAs/GaAs/AlGaAs/n-AlGaAs system is obtained respectively based on the opto-thermionic refrigeration model. The results show that the maximum refrigeration power in the p-BaTiO3/BaTiO3/SrTiO3/BaTiO3/n-BaTiO3 system increases dramatically with the increase of doping density from 1.0×1018 cm-3 to 5.0×1019 cm-3 while that in the p-AlGaAs/AlGaAs/GaAs/AlGaAs/n-AlGaAs system is nearly a constant. It is found that the different Auger coefficients and the competition between radiative power and dissipation power lead to the different behavior of the maximum refrigeration power dependence on the doping density of the two systems.
ZHANG Li-Li;HU Chun-Lian;WANG Can;LÜHui-Bin;HAN Peng;YANG Guo-Zhen;JIN Kui-Juan. Competition between Radiative Power and Dissipation Power in the Refrigeration Process in Oxide Multifilms[J]. 中国物理快报, 2010, 27(2): 27203-027203.
ZHANG Li-Li, HU Chun-Lian, WANG Can, LÜ, Hui-Bin, HAN Peng, YANG Guo-Zhen, JIN Kui-Juan. Competition between Radiative Power and Dissipation Power in the Refrigeration Process in Oxide Multifilms. Chin. Phys. Lett., 2010, 27(2): 27203-027203.
[1] Szot K, Speier W, Bihlmayer G and Waser R 2006 Nature Mater. 5 312 [2] Bellingeri E, Pellegrino L, Marr\'{e D, Pallecchi I and Siri A S 2003 J. Appl. Phys. 94 5976 [3]Yang G Z, Lu H B, Chen F, Zhao T and Chen Z H 2001 J. Crystal Growth 227--228 929 [4] Wang C C, Liu G Z, He M and Lu H B 2008 Appl. Phys. Lett. 92 052905 [5] Wang N, Lu H B et al 1999 Appl. Phys. Lett. 75 3464 [6] Eisenbeiser K et al 2000 Appl. Phys. Lett. 76 1324 [7] Wertz E T and Li Q 2007 Appl. Phys. Lett. 90 142506 [8] Mahan G D 1994 J. Appl. Phys. 76 1362 [9] Pringsheim P 1929 Z. Phys. 57 739 [10] Jia Y H, Zhong B, Ji X M and Yin J P 2008 Chin. Phys. Lett. 25 85 [11] Ding K and Zeng Y P 2008 Chin. Phys. Lett. 25 1878 [12] Jia Y H et al 2008 Chin. Phys. Lett. 25 3779 [13] Mal'shukov A G and Chao K A 2001 Phys. Rev. Lett. 86 5570 [14] Han P, Jin K J et al 2006 J. Appl. Phys. 99 074504 [15] Horio K and Yanai H 1990 IEEE Trans. Electron Devices 37 1093 [16] Sze S M 1981 Physics of Semiconductor Devices (New York: Wiley) [17] Abakumov V N, Perel V I and Yassievich I N 1991 Nonradiative Recombination in Semiconductors (Amsterdam: North-Holland) [18] \v{Sik J, Schubert M et al 2000 Appl. Phys. Lett. 76 2859 [19] Strauss U, R\"ule W W and K\"oler K 1993 Appl. Phys. Lett. 62 55 [20] Rubano A, Paparo D et al 2007 Phys. Rev. B 76 125115 [21] Yasuda H and Kanemitsu Y 2008 Phys. Rev. B 77 193202 [22] Takeda K et al 1985 Phys. Rev. B 32 1101 [23] Liu L F, Guo H Z et al 2005 J. Appl. Phys. 97 054102