Clockwise vs Counter-Clockwise I-V Hysteresis of Point-Contact Metal-Tip/Pr0.7 Ca0.3MnO3/Pt Devices
GANG Jian-Lei1,2, LI Song-Lin1, LIAO Zhao-Liang1, MENG Yang1, LIANG Xue-Jin1, CHEN Dong-Min1
1Beijing National Laboratory for Condensed Matter Physics, Institute of Physics, Chinese Academy of Sciences, Beijing 1001902Signal and Communication Research Institute, China Academy of RailwaySciences, Beijing 100081
Clockwise vs Counter-Clockwise I-V Hysteresis of Point-Contact Metal-Tip/Pr0.7 Ca0.3MnO3/Pt Devices
GANG Jian-Lei1,2, LI Song-Lin1, LIAO Zhao-Liang1, MENG Yang1, LIANG Xue-Jin1, CHEN Dong-Min1
1Beijing National Laboratory for Condensed Matter Physics, Institute of Physics, Chinese Academy of Sciences, Beijing 1001902Signal and Communication Research Institute, China Academy of RailwaySciences, Beijing 100081
摘要Metal-tip/Pr0.7Ca0.3MnO3/Pt devices possess two types of I-V hysteresis: clockwise vs counter clockwise depending on the tip materials. The criteria for categorization of these two types of devices can be simply based on whether the Gibbs free energy of oxidation for the metal tip is lower or higher than that of PCMO, respectively. While the clockwise hysteresis can be attributed to electric field induced oxidation/reduction, the counter clockwise hysteresis can be explained by oxygen vacancy migration in an electrical field. Alternating-current conductance spectra also reveal distinct hopping barriers between these two categories of devices at high resistive states.
Abstract:Metal-tip/Pr0.7Ca0.3MnO3/Pt devices possess two types of I-V hysteresis: clockwise vs counter clockwise depending on the tip materials. The criteria for categorization of these two types of devices can be simply based on whether the Gibbs free energy of oxidation for the metal tip is lower or higher than that of PCMO, respectively. While the clockwise hysteresis can be attributed to electric field induced oxidation/reduction, the counter clockwise hysteresis can be explained by oxygen vacancy migration in an electrical field. Alternating-current conductance spectra also reveal distinct hopping barriers between these two categories of devices at high resistive states.
[1] Waser R and Aono M 2007 Nature Mater. 6 833 [2] Huang Y J, Huang Y, Ding S J, Zhang W and Liu R 2007 Chin. Phys. Lett. 24 2942 [3] Odagawa A, Sato H et al 2004 Phys. Rev. B 70 224403 [4] Shang D S, Wang Q et al 2006 Phys. Rev. B 73 245427 [5] Sawa A, Fujii T, Kawasaki M and Tokura Y 2004 Appl. Phys. Lett. 85 4073 [6] Kim K M, Choi B J and Hwang C S 2007 Appl. Phys. Lett. 90 242906 [7] Nian Y B et al 2007 Phys. Rev. Lett. 98 146403 [8] Shono K, Kawano H, Yokota T and Gomi M 2008 Appl. Phys. Express 1 055002 [9] Shen W, Dittmann R, Breuer U and Waser R 2008 Appl. Phys. Lett. 93 222102 [10] Wang Q, Shang D S, Wu Z H, Chen L D and Li X M 2007 Appl. Phys. A 86 357 [11] Liao Z L, Wang Z Z et al 2009 Appl. Phys. Lett. 94 253503 [12] Li S L, Shang D S et al 2009 J. Appl. Phys. 105 033710 [13] Hasan M, Dong R et al 2008 Appl. Phys. Lett. 92 202102 [14] Lee C B, Kang B S, Benayad A, Lee M J, Ahn S E, Kim K H et al 2008 Appl. Phys. Lett. 93 042115 [15] Shono K, Kawano H, Yokota T and Gomi M 2008 Appl. Phys. Express 1 101901 [16] Makoto Nagashima and Dominik Schmidt 2005 US Patent 6962648 B2 [17] Gang J L, Li S L, Meng Y, Liao Z L, Liang X J and Chen D M 2009 Acta Phys. Sin. 58 5730 (in Chinese) [18] Jeppe C D and Thomas B S 2000 Rev. Mod. Phys. 72 873 [19] Yang J, Meng X J, Shen M R, Fang L, Wang J L, Lin T, Sun J L and Chu J H 2008 J. Appl. Phys. 104 104113 [20] You Y H, So B S, Hwang J H, Cho W, Lee S S, Chung T M, Kim C G and An K S 2006 Appl. Phys. Lett. 89 222105 [21] Das N, Tsui S, Xue Y Y, Wang Y Q and Chu C W 2008 Phys. Rev. B 78 235418 [22] Li S L, Gang J L, Li J, Chu H F and Zheng D N 2008 J. Phys. D: Appl. Phys. 41 185409 [23] Chen F, Zhao T, Fei Y Y, Lu H, Chen Z, Yang G and Zhu X D 2002 Appl. Phys. Lett. 80 2889 [24] Tomioka Y, Asamitsu A, Kuwahara H, Moritomo Y and Tokura Y 1996 Phys. Rev. B 53 R1689