Nanojunctions Contributing to High Performance Thermoelectric ZnO-Based Inorganic–Organic Hybrids
WU Zi-Hua, XIE Hua-Qing** , WANG Yuan-Yuan, XING Jiao-Jiao, MAO Jian-Hui
Department of Materials Engineering, College of Engineering, Shanghai Second Polytechnic University, Shanghai 201209
Abstract :Organic–inorganic nanojunctions can result in a selective scattering of charge carrier depending on their energy, which leads to a simultaneous increase in the Seebeck coefficient S and the power factor. In this work, the nanojunction is successfully employed at the organic–inorganic semiconductor interface of polyparaphenylene (PPP) and Zn1?x Agx O nanoparticles through the sol-gel method. The presence of nanoinclusions PPP in Zn0.9 Ag0.1 O matrix is found to be effective in improving the figure of merit (ZT) by the dual effects of an increase in the power factor consistent with the heterojunction effect and a reduction in thermal conductivity. Zn0.9 Ag0.1 O/0.1 wt% PPP exhibits a maximum figure of merit, i.e., ZT = 0.22.
收稿日期: 2015-07-08
出版日期: 2015-12-01
:
73.22.-f
(Electronic structure of nanoscale materials and related systems)
84.60.Bk
(Performance characteristics of energy conversion systems; figure of merit)
72.20.Pa
(Thermoelectric and thermomagnetic effects)
[1] Shen L X, Shai X X and Dong G J 2013 Acta Phys. Sin. 62 247401 (in Chinese) [2] Wu Z H, Xie H Q and Zhai Y B 2013 Appl. Phys. Lett. 103 243901 [3] Wang W J, Zhang Q H, Li J L, Liu X, Wang L J, Zhu J J, Luo W and Jiang W 2015 RSC Adv. 5 8988 [4] Pei Y, Lensch F J, Toberer E S, Medlin D L and Snyder G J 2011 Adv. Funct. Mater. 21 241 [5] Wu Z H, Xie H Q, Zhai Y B, Gan L H and Liu J 2015 Chin. Phys. B 24 34402 [6] Stein N, Peterman N, Theissmann R, Schierning G, Schmechel R and Wiggers H 2011 J. Mater. Res. 26 1872 [7] Zhang Q L, Jang W J, Li J L, Zhu J J, Wang L J, Zhua M F and Jiang W 2013 J. Mater. Chem. A 1 12109 [8] Kim K, Debnath P C, Lee D H, Kim S and Lee S Y 2011 Nanoscale Res. Lett. 6 552 [9] Zhang Q H, Ai X, Wang L J, Chang Y X, Luo W, Jiang W and Chen L D 2015 Adv. Funct. Mater. 25 966 [10] Wan Q, Xiong Z, Dai J, Rao J and Jiang F 2008 Opt. Mater. 30 817 [11] Zhang Q H, Ai X, Wang W J, Wang L J and Jiang W 2014 Acta Mater. 73 37 [12] Jood P, Mehta R J, Zhang Y, Peleckis G, Wang X, Siegel R W, Borca T T, Dou S X and Ramanath G 2011 Nano Lett. 11 4337 [13] Jung K H, Lee K H, Seo W S and Choi S M 2012 Appl. Phys. Lett. 100 253902 [14] Colder H, Guilmeau E, Harnois C, Marinel S, Retoux R and Savary E 2011 J. Eur. Ceram. Soc. 31 2957 [15] Ohtaki M, Tsubota T, Eguchi K and Arai H 1996 J. Appl. Phys. 79 1816 [16] Malen J A, Yee S K, Majumdar A and Segalman R A 2010 Chem. Phys. Lett. 491 109 [17] Baheti K, Malen A, Doak P, Reddy P, Jang S, Tilley T, Majumdar A and Segalman A 2008 Nano Lett. 8 715 [18] See K C, Feser J P, Chen C E, Majumdar A, Urban J J and Segalman R A 2010 Nano Lett. 10 4664 [19] Wang Y Y, Cai K F, Yin J L, An B J, Du Y and Yao X 2011 J. Nanopart. Res. 13 533 [20] Anno H, Fukamoto M, Heta Y, Koga K, Itahara H, Asahi R, Satomura R, Sannomiya M and Toshima N 2009 J. Electron. Mater. 38 1443 [21] Pintér E, Fekete Z A, Berkesi O, Makra P, Patzkó á and Visy C 2007 J. Phys. Chem. C 111 11872 [22] Du Y, Cai K, Shen S, An B, Qin Z and Casey P 2012 J. Mater. Sci.: Mater. Electron. 23 870 [23] Ueno H and Yoshino K 1986 J. Phys. Soc. Jpn. 55 4382 [24] He M, Tian Y F, Springer D, Putra I A, Xing G Z, Chia E M, Cheong S A and Wu T 2011 Appl. Phys. Lett. 99 222511 [25] Fan J W and Freer R 1995 J. Appl. Phys. 77 4795 [26] Huang G Y, Wang C Y and Wang J T 2009 J. Phys.: Condens. Matter 21 345802 [27] Volnianska O, Boguslawski P, Kaczkowski J, Jakubas P, Jezierski A and Kaminska E 2009 Phys. Rev. B 80 245212 [28] Faleev S V and Léonard F 2008 Phys. Rev. B 77 214304 [29] Medlin D L and Snyder G J 2009 Curr. Opin. Colloid. 14 226 [30] Sumithra S, Takas N J, Misra D K, Nolting W M, Poudeu P F and Stokes K L 2011 Adv. Energy Mater. 1 1141 [31] Heremans J P, Thrush C M and Morelli D T 2005 J. Appl. Phys. 98 063703 [32] Mahan G D and Sofo J O 1996 Proc. Natl. Acad. Sci. USA 93 7436 [33] Heremans J P, Jovovic V, Toberer E S, Saramat A, Kurosaki K, Charoenphakdee A, Yamanaka S and Snyder G J 2008 Science 321 554 [34] Reddy P, Jang S Y, Segalman R A and Majumdar A 2007 Science 315 1568 [35] Cahill D G, Ford W K, Goodson K E, Mahan G D, Majumdar A and Maris H J 2003 J. Appl. Phys. 93 793 [36] Kuo S W, Li J C and Schmid A W 1992 Appl. Phys. A 55 289 [37] Asheghi M, Leung Y K, Wong S S and Goodson K E 1997 Appl. Phys. Lett. 71 1798
[1]
. [J]. 中国物理快报, 2023, 40(2): 29901-.
[2]
. [J]. 中国物理快报, 2022, 39(12): 127302-.
[3]
. [J]. 中国物理快报, 2021, 38(12): 127301-.
[4]
. [J]. 中国物理快报, 2021, 38(2): 27301-.
[5]
. [J]. 中国物理快报, 2020, 37(11): 117301-.
[6]
. [J]. 中国物理快报, 2020, 37(11): 118501-.
[7]
. [J]. 中国物理快报, 2020, 37(9): 97301-.
[8]
. [J]. 中国物理快报, 2020, 37(8): 88201-.
[9]
. [J]. 中国物理快报, 2020, 37(7): 77302-.
[10]
. [J]. 中国物理快报, 2020, 37(1): 17402-017402.
[11]
. [J]. 中国物理快报, 2019, 36(11): 117301-.
[12]
. [J]. 中国物理快报, 2019, 36(9): 97301-.
[13]
. [J]. 中国物理快报, 2018, 35(12): 127301-.
[14]
. [J]. 中国物理快报, 2018, 35(12): 127302-.
[15]
. [J]. 中国物理快报, 2018, 35(1): 17101-.