Simultaneous Enhancement of Electrical Conductivity and Seebeck Coefficient of Poly(3,4-ethylenedioxythiophene):Poly(styrenesulfonate) Films Treated with Urea
KONG Fang-Fang1, LIU Cong-Cong1, XU Jing-Kun1**, JIANG Feng-Xing1, LU Bao-Yang1, YUE Rui-Rui1, LIU Guo-Dong2, WANG Jian-Min2
1Jiangxi Key Laboratory of Organic Chemistry, Jiangxi Science and Technology Normal University, Nanchang 330013 2School of Communication and Electronics, Jiangxi Science and Technology Normal University, Nanchang 330013
Simultaneous Enhancement of Electrical Conductivity and Seebeck Coefficient of Poly(3,4-ethylenedioxythiophene):Poly(styrenesulfonate) Films Treated with Urea
KONG Fang-Fang1, LIU Cong-Cong1, XU Jing-Kun1**, JIANG Feng-Xing1, LU Bao-Yang1, YUE Rui-Rui1, LIU Guo-Dong2, WANG Jian-Min2
1Jiangxi Key Laboratory of Organic Chemistry, Jiangxi Science and Technology Normal University, Nanchang 330013 2School of Communication and Electronics, Jiangxi Science and Technology Normal University, Nanchang 330013
摘要The thermoelectric performance of free-standing poly(3,4-ethylenedioythiophene): poly(styrenesulfonate) (PEDOT:PSS) thin films deposited from aqueous dispersion treated by different concentrations of urea are investigated in detail. The electrical conductivity, Seebeck coefficient and power factor of PEDOT:PSS films versus temperature are determined, respectively. It is found that both the electrical conductivity and Seebeck coefficient of PEDOT:PSS films are enhanced after treatment with urea. Conductivity could be enhanced from 8.16 to 63.13 S⋅cm−1, the Seebeck coefficient is increased from 14.47 to 20.7 µV⋅K−1 and the power factor is rises to 2.7 µW⋅m−1K−2 at 300 K.
Abstract:The thermoelectric performance of free-standing poly(3,4-ethylenedioythiophene): poly(styrenesulfonate) (PEDOT:PSS) thin films deposited from aqueous dispersion treated by different concentrations of urea are investigated in detail. The electrical conductivity, Seebeck coefficient and power factor of PEDOT:PSS films versus temperature are determined, respectively. It is found that both the electrical conductivity and Seebeck coefficient of PEDOT:PSS films are enhanced after treatment with urea. Conductivity could be enhanced from 8.16 to 63.13 S⋅cm−1, the Seebeck coefficient is increased from 14.47 to 20.7 µV⋅K−1 and the power factor is rises to 2.7 µW⋅m−1K−2 at 300 K.
(Performance characteristics of energy conversion systems; figure of merit)
引用本文:
KONG Fang-Fang;LIU Cong-Cong;XU Jing-Kun**;JIANG Feng-Xing;LU Bao-Yang;YUE Rui-Rui;LIU Guo-Dong;WANG Jian-Min
. Simultaneous Enhancement of Electrical Conductivity and Seebeck Coefficient of Poly(3,4-ethylenedioxythiophene):Poly(styrenesulfonate) Films Treated with Urea[J]. 中国物理快报, 2011, 28(3): 37201-037201.
KONG Fang-Fang, LIU Cong-Cong, XU Jing-Kun**, JIANG Feng-Xing, LU Bao-Yang, YUE Rui-Rui, LIU Guo-Dong, WANG Jian-Min
. Simultaneous Enhancement of Electrical Conductivity and Seebeck Coefficient of Poly(3,4-ethylenedioxythiophene):Poly(styrenesulfonate) Films Treated with Urea. Chin. Phys. Lett., 2011, 28(3): 37201-037201.
[1] Tritt T M, Böttner H and Chen L D 2008 MRS Bull. 33 366
[2] Hiroshige Y, Ookawa M and Toshim N 2007 Synth. Meter. 157 467
[3] Hiroshige Y, Ookawa M and Toshim N 2006 Synth. Meter. 156 1341
[4] Lévesque I, Gao X et al 2005 Reacti. Funct. Poly. 65 23
[5] Lévesque I, Bertrand P O, Blouin N, Leclerc M et al 2007 Chem. Mater. 19 2128
[6] Taggart D K, Yang Y A, Kung S C, McIntire T M and Penner R M 2010 ACS Nano Lett. 11 125
[7] Heywang G and Jonas F 1992 Adv. Mater. 4 116
[8] Pei Q, Zuccafrello G, Ahlskog M and Inganas O 1994 Polymer 35 1347
[9] Groenendaal L, Jonas F, Freitag D, Pielartzik H and Reynolds J R 2000 Adv. Mater. 12 481
[10] Yakuphanoglu F and Senkal B F 2007 J. Phys. Chem. C 111 1840
[11] Carrasco P M, Cortazar M, Ochoteco E, Calahorra E and Pomposo J A 2007 Surf. Interface Anal. 39 26
[12] Jin S Cong S, Xue G, Xiong H, Mansdorf B and Cheng S Z D 2002 Adv. Mater. 14 1492
[13] Kaiser A B 1989 Phys. Rev. B 40 2806
[14] Lu B Y, Liu C C et al 2010 Chin. Phys. Lett. 27 057201
[15] Sun J, Yeh M L, Jung B J et al 2010 Macromolecules 43 2897
[16] Verbakel F, Meskers S and Janssen R 2006 Chem. Mater. 18 2707
[17] Meskers S, Duren J, Janssen R, Louwet F and Groenendaal L 2003 Adv. Mater. 15 613
[18] Yoo B, Dodabalapur A, Lee DC, Hanrath T and Korgel BA 2007 Appl. Phys. Lett. 90 072106
[19] Chen B, Cui T, Liu Y and Varahramyan K 2003 Solid-State Electron. 47 841
[20] Xia Y J and Ouyang J Y 2010 ACS Appl. Mater. Interfaces 2 474
[21] Chen Y, Kang K S, Han K J, Yoo K H and Kim Jaehwan 2009 Synth. Meter. 159 1701
[22] Hiroshige Y, Ookawa M and Toshima N 2007 Synth. Meter. 157 467
[23] Jiang F X, Xu J K, Lu B Y et al 2008 Chin. Phys. Lett. 25 2202
[24] Kim D, Kim Y, Choi K, Grunlan J C and Yu C 2010 ACS Nano 4 513
[25] See K C, Feser J P, Chen C E et al 2010 ACS Nano Lett. 10 4664
[26] Zhang B, Sun J, Katz H E, Fang F and Opila R L 2010 ACS Appl. Mater. Interface 2 3170
[27] Nardes A M, Janssen R A J and Kemerink M 2008 Adv. Funct. Mater. 18 865
[28] Nardes A M, Kemerink M et al 2008 Org. Electron. 9 727
[29] Snaith H J, Kenrick H, Chiesa M and Friend R H 2005 Polymer 46 2573
[30] Ouyang J Y, Xu Q F, Chu C W, Yang Y, Li G and Shinar J 2004 Polymer 45 8443
[31] Timpanaro S, Kemerink M, Touwslager F J, M M De Kok and Schrader S 2004 Chem. Phys. Lett. 394 339
[32] Kim J Y, Jung J H, Lee D E and Joo J 2002 Synth. Meter. 126 311
[33] Gao X, Uehara K, Klug D D and Tse J S 2006 Comput. Mater. Sci. 36 49
[34] Gao X, Uehara K, Klug D D, Patchkovskii S, Tse J S and Tritt T M 2005 Phys. Rev. B 72 125202
[35] Dressethaus M S, Chen G, Tang M Y et al 2007 Adv. Mater. 19 1043
[36] Shakouri A and Li S Q 1999 Proc. Int. Conf. Thermoelectrics (Baltimore August–02 September 1999) 29 402
[37] Yao Q, Chen L D, Xu X C and Wang C F 2005 Chem. Lett. 34 522
[38] Makala R S, Jagannadham K and Sales B C J 2003 Appl. Phys. 94 3907
[39] Liufu S C, Chen L D, Yao Q and Wang C F 2007 Appl. Phys. Lett. 90 112106
[40] Yan H, Ohta N and Toshima N 2001 Macromol. Mater. Eng. 286 139
[41] Long Y, Chen Z, Zhang X, Zhang J and Liu Z 2004 Appl. Phys. Lett. 85 1796
[42] Yan H, Sada N and Toshima N 2002 J. Therm. Anal. Calorim. 69 881