摘要AlxGa1−xN/GaN heterostructures are investigated by magnetotransport experiments in tilted magnetic fields at low temperatures. The spin-split peaks of the Shubnikov-de Haas (SdH) oscillations are observed at high magnetic fields, which are attributed to the Zeeman spin-splitting of the two-dimensional electron gas at the heterointerface. The exchange enhanced g* of the spin-splitting is investigated by measuring the positions of the pairs of spin-split SdH maxima. Moreover, it is found that g* becomes smaller with the increasing tilt angle, which suggests the anisotropy of g* is due to the strong polarization-induced electric field at the AlxGa1−xN/GaN heterointerface.
Abstract:AlxGa1−xN/GaN heterostructures are investigated by magnetotransport experiments in tilted magnetic fields at low temperatures. The spin-split peaks of the Shubnikov-de Haas (SdH) oscillations are observed at high magnetic fields, which are attributed to the Zeeman spin-splitting of the two-dimensional electron gas at the heterointerface. The exchange enhanced g* of the spin-splitting is investigated by measuring the positions of the pairs of spin-split SdH maxima. Moreover, it is found that g* becomes smaller with the increasing tilt angle, which suggests the anisotropy of g* is due to the strong polarization-induced electric field at the AlxGa1−xN/GaN heterointerface.
(Galvanomagnetic and other magnetotransport effects)
引用本文:
TANG Ning**;HAN Kui;LU Fang-Chao;DUAN Jun-Xi;XU Fu-Jun;SHEN Bo
. Exchange Enhancement of Spin-Splitting in AlxGa1−xN/GaN Heterostructures in Tilted Magnetic Fields[J]. 中国物理快报, 2011, 28(3): 37103-037103.
TANG Ning**, HAN Kui, LU Fang-Chao, DUAN Jun-Xi, XU Fu-Jun, SHEN Bo
. Exchange Enhancement of Spin-Splitting in AlxGa1−xN/GaN Heterostructures in Tilted Magnetic Fields. Chin. Phys. Lett., 2011, 28(3): 37103-037103.
[1] Kita T, Sato Y, Gozu S and Yamada S 2001 Physica B 298 65
[2] Tsubaki K, Maeda N, Saitoh T and Kobayashi N 2002 Appl. Phys. Lett. 80 3126
[3] Litvinov V I 2003 Phys. Rev. B 68 155314
[4] Ambacher O, Foutz B, Smart J, Shealy J R, Weimann N G, Chu K, Murphy M, Sierakowski A J, Schaff W J, Eastman L F, Dimitrov R, Mitchell A and Stutzmann M 2000 J. Appl. Phys. 87 334
[5] Fang F F and Stiles P J 1968 Phys. Rev. 174 823
[6] Knap W, Frayssinet E, Sadowski M L, Skierbiszewski C, Maude D, Falko V, Khan M A and Shur M S 1999 Appl. Phys. Lett. 75 3156
[7] Cho K S, Huang T Y, Huang C P, Chiu Y H, Liang C T, Chen Y F and Lo I 2004 J. Appl. Phys. 96 7370
[8] Tang N, Shen B, Wang M J, Han K, Yang Z J, Xu K, Zhang G Y, Lin T, Zhu B, Zhou W Z and Chu J H 2006 Appl. Phys. Lett. 88 172112
[9] Ando T and Uemura Y 1974 J. Phys. Soc. Jpn. 37 1044
[10] Nicholas R J, Haug R J and Klitzing K V 1988 Phys. Rev. B 37 1294
[11] Leadley D R, Nicholas R J, Harris J J and Foxon C T 1998 Phys. Rev. B 58 13036
[12] Wang Y J, Kaplan R, Ng H K, Doverspike K, Gaskill D K, Ikedo T, Akasaki I and Amono H 1996 J. Appl. Phys. 79 8007
[13] Savel'ev J G, Kreshchuk A M, Novikov S V, Shik A Y, Remeny G, Kovacs G, Podor B and Gombos G 1996 J. Phys.: Condens. Matter 8 9025
[14] Gui Y S, Hu C M, Chen Z H, Zheng G Z, Guo S L, Chu J H, Chen J X and Li A Z 2000 Phys. Rev. B 61 7237
[15] Ivchenko E L, Kiselev A A and Willander M 1997 Solid State Commun. 102 375