摘要The geometric phase, in particular the Berry phase, in an entangled state of five spin-1/2 particles is studied. A time-dependent magnetic field is applied to control the time evolution of the cluster. Using the method of algebraic dynamics, we calculate the non-adiabatic geometric phase or Berry phase and the degeneracy energy levels when the magnetic rotates around Z axis. Based on the exact analytical solutions, we show how the Berry phase of the entangled state of this cluster depends on the external magnetic field parameters ω (the angular velocity of the rotating magnetic field) and θ (the angle between the magnetic field and Z axis).
Abstract:The geometric phase, in particular the Berry phase, in an entangled state of five spin-1/2 particles is studied. A time-dependent magnetic field is applied to control the time evolution of the cluster. Using the method of algebraic dynamics, we calculate the non-adiabatic geometric phase or Berry phase and the degeneracy energy levels when the magnetic rotates around Z axis. Based on the exact analytical solutions, we show how the Berry phase of the entangled state of this cluster depends on the external magnetic field parameters ω (the angular velocity of the rotating magnetic field) and θ (the angle between the magnetic field and Z axis).
(Vibronic, rovibronic, and rotation-electron-spin interactions)
引用本文:
YAN Xiao-Bo. Berry Phase in an Entangled Spin Cluster with Five Particles[J]. 中国物理快报, 2007, 24(8): 2170-2172.
YAN Xiao-Bo. Berry Phase in an Entangled Spin Cluster with Five Particles. Chin. Phys. Lett., 2007, 24(8): 2170-2172.
[1]Zanardi P and Rasetti M 1999 Phys. Lett. A 264 94 [2]Jones J, Vedral V, Ekert A and Castagnoli G 2000 Nature 403 869 [3]Duan L M, Cirac J and Zoller P 2001 Science 292 1695 [4]Kwiat P and Chiao R 1991 Phys. Rev. Lett. 66 588 [5]Chiao R and Wu Y S 1986 Phys. Rev. Lett. 57 933 [6]Tomita A and Chiao R 1986 Phys. Rev. Lett. 57 937 [7]Hasegawa Y, Zawisky M, Rauch H and Ioffe A 1996 Phys.Rev. A 53 2486 [8]Hasegawa Y, Loidl R, Badurek G, Baron M, Manini N,Pistolesi F and Rauch H 2002 Phys. Rev. A 65 052111 [9]Webb C L, Godun R M, Summy G S, Oberthaler M K, Featonby P D,Foot C J and Burnett K 1999 Phys. Rev. A 60 R1783 [10]Sjoqvist E 2000 Phys. Rev. A 62 022109 [11]Hessmo B and Sjoqvist E 2000 Phys. Rev. A 62 062301 [12]Tong D M et.al 2003 J. Phys. A: Math. Gen. 36 1149 [13Reininhold A. Bertlmann, Katharina Durstberger, Yuji Hasegawa,and Hiesmayr B C 2004 Phys. Rev. A 69 032112 [14]Yi X X, Wang L C and Zheng T Y 2004 Phys. Rev. Lett. 92 150406 [15]Wang S J, Li F L and Weiguny A 1993 Phys. Lett. A 180 189 [16]Yan X B and Wang S J 2006 Acta Phys. Sin. 55 1951(in Chinese) [17]Cen L X, Li X Q, Yan Y J, Zheng H Z and Wang S J 2003 Phys. Rev. Lett. 90 147902