摘要We investigate general properties of thermal entanglement in arbitrary-length 1D Heisenberg spin-1/2 chain based on classifications of its eigenstates. The influences of magnetic field and temperature on entanglement are qualitatively discussed and three features are presented. The conclusions hold for both bipartite and multipartite entanglement, and are in agreement with the results numerically proven by Arnesen et al. [Phys. Rev. Lett. 59(2001)017901].
Abstract:We investigate general properties of thermal entanglement in arbitrary-length 1D Heisenberg spin-1/2 chain based on classifications of its eigenstates. The influences of magnetic field and temperature on entanglement are qualitatively discussed and three features are presented. The conclusions hold for both bipartite and multipartite entanglement, and are in agreement with the results numerically proven by Arnesen et al. [Phys. Rev. Lett. 59(2001)017901].
(Quantized spin models, including quantum spin frustration)
引用本文:
ZHANG Ting;WU Wei;CHEN Ping-Xing;LI Cheng-Zu. General Properties of Thermal Entanglement in an Arbitrary-Length Heisenberg Spin Chain[J]. 中国物理快报, 2007, 24(8): 2167-2169.
ZHANG Ting, WU Wei, CHEN Ping-Xing, LI Cheng-Zu. General Properties of Thermal Entanglement in an Arbitrary-Length Heisenberg Spin Chain. Chin. Phys. Lett., 2007, 24(8): 2167-2169.
[1] Einstein A, Podolsky B and Rosen N 1935 Phys. Rev. 47 777 [2] Schrodinger E 1935 Naturwissenschaften 23 807 [3] Bell J S 1964 Physics 1 195 [4] Nielsen M A and Chuang I L 2000 Quantum Computation and QuantumInformation (Cambridge: Cambridge University Press) [5] Bennett C H and DiVincenzo D P 2000 Nature 404 247 [6] Mattis D C 1965 The Theory of Magnetism (New York:Harper and Row) [7] Thompson C J 1972 Phase Transitions and CriticalPhenomena ed Domb C and Green M S (London: Academic) [8] Takahashi M 1999 Thermodynamics of One-Dimensional SolvableModels (Cambridge: Cambridge University Press) [9] Hammar P R, Stone M B and Reich D H 1999 Phys. Rev. B 59 1008 [10] Arnesen M C, Bose S and Vedral V 2001 Phys. Rev. Lett. 87 017901 [11] Wang X G and Zanardi P 2002 Phys. Lett. A 301 1(2002) [12] Wang X G 2002 Phys. Rev. A 66 034302 [13] O'Connore K M and Wootters W K 2001 Phys. Rev. A 63 052302 [14] Wang X G 2004 Phys. Lett. A 329 439 [15] Asoudeh M and Karimipour V 2005 Phys. Rev. A 71 022308 [16] Rossignoli R and Canosa N 2005 Phys. Rev. A 72 012335 [17] Brukner \u{C and Vedral V Preprint quant-ph/0406040 [18] Wie\'{sniak M, Vedral V and Brukner\u{C Preprintquant-ph/0503037 [19] Zhou L,Yi X X,Song H S and Guo Y Q 2005 Chin. Phys. 14 1168 [20] Osborne T L and Nielsen M A 2002 Phys. Rev. A 66 032110 [21] Yeo Y, Liu T, Lu Y E and Yang Q Z 2005 J. Phys. A: Math.Gen. 38 3235 [22] Bethe H A 1931 Z. Phys. 71 205 [23] Zachary N C Ha 1996 Quantum Many-Body System in OneDimension (Singapore: World Scientific) [24] Karbach M and Muller G Preprint cond-mat/9809162 Karbach M, Hu K and Muller G Preprint cond-mat/9809163,0008018 [25] Horodecki M, Horodecki P and Horodecki R 1996 Phys.Lett. A 223 1 Terhal B M 2002 J. Therm. Comput. Sci. 287 313