Optical Nonlinear Properties of CdSeS/ZnS Core/Shell Quantum Dots
WU Feng1,2, TIAN Wei1, MA i-Na1, CHEN Wen-Ju1, ZFANG Gui-Lan1, ZHAO Guo-Feng3, CAO Shi-Dong3, XIE Wei3
1Laboratory of Optoelectronics Information Science and Technology, Institute of Modern Optics, Nankai University, Tianjin 3000712Departments of Physics, North University of China, Taiyuan 0300513Yourui Quantum Dots Company of Technology Development, Tianjin 300071
Optical Nonlinear Properties of CdSeS/ZnS Core/Shell Quantum Dots
1Laboratory of Optoelectronics Information Science and Technology, Institute of Modern Optics, Nankai University, Tianjin 3000712Departments of Physics, North University of China, Taiyuan 0300513Yourui Quantum Dots Company of Technology Development, Tianjin 300071
摘要The optical nonlinear properties of CdSeS/ZnS quantum dots (QDs) are investigated by Z-scan technique using fundamental harmonic generation (1064nm) of mode-locked Nd:YAG laser for the first time. The experimental results show that two photon absorptions (TPA) occur at input intensity up to 12.5GW/cm2. CdSeS/ZnS QDs have an average TPA cross section of 13710GM and large nonlinear refractive index on order of 10-7esu. The large optical nonlinearities perhaps allow the CdSeS/ZnS QDs to be one kind of candidate material for bioimaging and fluorescence label, optical limiting and all-optical switching.
Abstract:The optical nonlinear properties of CdSeS/ZnS quantum dots (QDs) are investigated by Z-scan technique using fundamental harmonic generation (1064nm) of mode-locked Nd:YAG laser for the first time. The experimental results show that two photon absorptions (TPA) occur at input intensity up to 12.5GW/cm2. CdSeS/ZnS QDs have an average TPA cross section of 13710GM and large nonlinear refractive index on order of 10-7esu. The large optical nonlinearities perhaps allow the CdSeS/ZnS QDs to be one kind of candidate material for bioimaging and fluorescence label, optical limiting and all-optical switching.
[1] Akira M et al 2005 J. Histochem. Cytochem. 53 833 [2] Smita P et al 2006 J. Neurosci. 26 1893 [3] Fu A et al 2005 Current Opinion in Neurobiology 15568 [4] Hao Z H et al 2006 Chin. Phys. Lett. 23 2859 [5] Prasanth R et al 2004 Appl. Phys. Lett. 84 4059 [6] Yu B L, Zhang G L and Chen W J 1996 Acta Phys. Sin. 5 377 (in Chinese) [7] He J et al 2004 J. Appl. Phys. 95 6381 [8] V V Nikesh et al 2004 Appl. Phys. Lett. 84 4602 [9] Wang X et al 2006 J. Phys. Chem. B 110 1566 [10] B O Dabbousi et al 1997 J. Phys. Chem. B 101 9463 [11] Reiss P et al 2003 Synthetic Metals 139 649 [12] Lin C I et al 2004 Biosenelectronics 20 127 [13] Ding S et al 2006 Acta Phys. Sin. 55 753 (in Chinese) [14] Irina G and Alain H 2005 Opt. Commun. 246 205 [15] Feng X et al 2006 Physica B 383 207 [16] Amit D L et al 2007 Appl. Phys. Lett. 90 133113 [17] Najeh A S et al 2007 Chem. Mater. 19 5185 [18] Zheng J et al 2006 J. Opt. A: Pure Appl. Opt. 8 835 [19] By A D Yoffe 1993 Adv. Phys. 42 173 [20] Shinojima H, Yumoto J and Uesugi N 1992 Appl. Phys.Lett. 60 298 [21] Sheik-Bahae M et al 1990 IEEE J. Quantum Electron. 26760 [22] Zheng J J et al 2006 Chin. Phys. Lett. 23 3097