Au Microdisk-Size Dependence of Quantum Dot Emission from the Hybrid Metal-Distributed Bragg Reflector Structures Employed for Single Photon Sources
WANG Hai-Yan1, SU Dan1, YANG Shuang1, DOU Xiu-Ming1, ZHU Hai-Jun1, JIANG De-Sheng1, NI Hai-Qiao1, NIU Zhi-Chuan1, ZHAO Cui-Lan2, SUN Bao-Quan1**
1State Key Laboratory for Superlattices and Microstructure, Institute of Semiconductors, Chinese Academy of Sciences, Beijing 100083 2College of Physics and Electronic Information, Inner Mongolia University for Nationalities, Tongliao 028043
Abstract:We investigate metallic microdisk-size dependence of quantum dot (QD) spontaneous emission rate and micro-antenna directional emission effect for the hybrid metal-distributed Bragg reflector structures based on a particular single QD emission. It is found that the measured photoluminescence (PL) intensity is very sensitive to the size of metallic disk, showing an enhancement factor of 11 when the optimal disk diameter is 2 μm and the numerical aperture of microscope objective NA=0.5. It is found that for large metal disks, the Purcell effect is dominant for enhanced PL intensity, whereas for small size disks the main contribution comes from plasmon scattering at the disk edge within the light cone collected by the microscope objective.
(Collective excitations (including excitons, polarons, plasmons and other charge-density excitations))
引用本文:
. [J]. 中国物理快报, 2015, 32(10): 107804-107804.
WANG Hai-Yan, SU Dan, YANG Shuang, DOU Xiu-Ming, ZHU Hai-Jun, JIANG De-Sheng, NI Hai-Qiao, NIU Zhi-Chuan, ZHAO Cui-Lan, SUN Bao-Quan. Au Microdisk-Size Dependence of Quantum Dot Emission from the Hybrid Metal-Distributed Bragg Reflector Structures Employed for Single Photon Sources. Chin. Phys. Lett., 2015, 32(10): 107804-107804.
[1] Santori C, Fattal D, Vu?kovi? J, Solomon G S and Yamamoto Y 2002 Nature419 594 [2] Gérard J M, Sermage B, Gayral B, Legrand B, Costard E and Thierry-Mieg V 1998 Phys. Rev. Lett.81 1110 [3] Badolato A, Hennessy K, Atatüre M, Dreiser J, Hu E, Petroff P M and Imamo?lu A 2005 Science308 1158 [4] Urbanczyk A, Hamhuis G J and Notzel R 2010 Nanoscale Res. Lett.5 1926 [5] Huck A, Kumar S, Shakoor A and Andersen U L 2011 Phys. Rev. Lett.106 096801 [6] Yuan J Y, Jin C Y, Skacel M, Urbańczyk A, Xia T, Veldhoven P J van and Notzel R 2013 Appl. Phys. Lett.102 191111 [7] LeBlanc S J, McClanahan M R, Jones M and Moyer P J 2013 Nano Lett.13 1662 [8] Derom S, Bouhelier A, Kumar A, Leray A, Weeber J C, Buil S, Quélin X, Hermier J P and Colas des F G 2014 Phys. Rev. B 89 035401 [9] Gazzano O, Michaelis de Vasconcellos S, Gauthron K, Symonds C, Bloch J, Voisin P, Bellessa J, Lema?tre A and Senellart P 2011 Phys. Rev. Lett.107 247402 [10] Braun T, Baumann V, Iff O, H?fling S, Schneider C and Kamp M 2015 Appl. Phys. Lett.106 041113 [11] Sasin M E, Seisyan R P, Kalitteevski M A, Brand S, Abram R A, Chamberlain J M, Egorov A Yu, Vasil'ev A P, Mikhrin V S and Kavokin A V 2008 Appl. Phys. Lett.92 251112 [12] Gazzano O, Michaelis de Vasconcellos S, Gauthron K, Symonds C, Voisin P, Bellessa J, Lema?tre A and Senellart P 2012 Appl. Phys. Lett.100 232111 [13] Kaliteevski M, Iorsh I, Brand S, Abram R A, Chamberlain J M, Kavokin A V and Shelykh I A 2007 Phys. Rev. B 76 165415 [14] Esteban R, Teperik T V and Greffet J J 2010 Phys. Rev. Lett.104 026802 [15] Ringler M, Schwemer A, Wunderlich M, Nichtl A, Kurzinger K, Klar T A and Feldmann J 2008 Phys. Rev. Lett.100 203002 [16] Lee K H, Green A M, Taylor R A, Sharp D N, Scrimgeour J, Roche O M, Na J H, Jarjour A F and Turberfield A J 2006 Appl. Phys. Lett.88 193106 [17] Thon S M, Rakher M T, Kim H, Gudat J, Irvine W T M, M Petroff P and Bouwmeester D 2009 Appl. Phys. Lett.94 111115 [18] Wang H Y, Dou X M, Yang S, Su D, Jiang D S, Ni H Q, Niu Z C and Sun B Q 2014 J. Appl. Phys.115 123104 [19] Akselrod G M, Argyropoulos C, Hoang T B, Ciracì C, Fang C, Huang J N, Smith D R and Mikkelsen M H 2014 Nat. Photon.8 835 [20] Visser H J 2012 Antenna Theory and Applications (New York: Wiley) chap 5 p 85