Spectrum of the Hole Excitation in Spin-Orbit Mott Insulator Na$_{2}$IrO$_{3}$
Wei Wang1, Zhao-Yang Dong2, Shun-Li Yu3,4*, and Jian-Xin Li3,4*
1School of Science, Nanjing University of Posts and Telecommunications, Nanjing 210023, China 2Department of Applied Physics, Nanjing University of Science and Technology, Nanjing 210094, China 3National Laboratory of Solid State Microstructures and Department of Physics, Nanjing University, Nanjing 210093, China 4Collaborative Innovation Center of Advanced Microstructures, Nanjing University, Nanjing 210093, China
Abstract:We study the motion of a hole with internal degrees of freedom, introduced to the zigzag magnetic ground state of Na$_{2}$IrO$_{3}$, by using the self-consistent Born approximation. We find that the low-, intermediate-, and high-energy spectra are primarily attributed to the singlet, triplet, and quintet hole contributions, respectively. The spectral functions exhibit distinct features such as the electron-like dispersion of low-energy states near the $\varGamma$ point, the maximum $M$-point intensity of mid-energy states, and the hole-like dispersion of high-energy states. These features are robust and almost insensitive to the exchange model and Hund's coupling, and are in qualitative agreement with the angular-resolved photoemission spectra observed in Na$_{2}$IrO$_{3}$. Our results reveal that the interference between internal degrees of freedom in different sublattices plays an important role in inducing the complex dispersions.
Kim B J, Jin H, Moon S J, Kim J Y, Park B G, Leem C S, Yu J, Noh T W, Kim C, Oh S J, Park J H, Durairaj V, Cao G, and Rotenberg E 2008 Phys. Rev. Lett.101 076402
[11]
Kim B J, Ohsumi H, Komesu T, Sakai S, Morita T, Takagi H, and Arima T 2009 Science323 1329
Plumb K W, Clancy J P, Sandilands L J, Shankar V V, Hu Y F, Burch K S, Kee H Y, and Kim Y J 2014 Phys. Rev. B90 041112
[18]
Banerjee A, Bridges C A, Yan J Q, Aczel A A, Li L, Stone M B, Granroth G E, Lumsden M D, Yiu Y, Knolle J, Bhattacharjee S, Kovrizhin D L, Moessner R, Tennant D A, Mandrus D G, and Nagler S E 2016 Nat. Mater.15 733
Ran K J, Wang J H, Wang W, Dong Z Y, Ren X, Bao S, Li S C, Ma Z, Gan Y, Zhang Y T, Park J T, Deng G, Danilkin S, Yu S L, Li J X, and Wen J 2017 Phys. Rev. Lett.118 107203
Johnson R D, Williams S C, Haghighirad A A, Singleton J, Zapf V, Manuel P, Mazin I I, Li Y, Jeschke H O, Valentí R, and Coldea R 2015 Phys. Rev. B92 235119
[23]
Cao H B, Banerjee A, Yan J Q, Bridges C A, Lumsden M D, Mandrus D G, Tennant D A, Chakoumakos B C, and Nagler S E 2016 Phys. Rev. B93 134423
Comin R, Levy G, Ludbrook B, Zhu Z H, Veenstra C N, Rosen J A, Singh Y, Gegenwart P, Stricker D, Hancock J N, van der Marel D, Elfimov I S, and Damascelli A 2012 Phys. Rev. Lett.109 266406
[37]
Alidoust N, Liu C, Xu S Y, Belopolski I, Qi T, Zeng M, Sanchez D S, Zheng H, Bian G, Neupane M, Liu Y T, Wilson S D, Lin H, Bansil A, Cao G, and Hasan M Z 2016 Phys. Rev. B93 245132
[38]
Moreschini L, Lo V I, Breznay N P, Moser S, Ulstrup S, Koch R, Wirjo J, Jozwiak C, Kim K S, Rotenberg E, Bostwick A, Analytis J G, and Lanzara A 2017 Phys. Rev. B96 161116
[39]
Rodriguez J, Lopez G, Ramirez F, Breznay N P, Kealhofer R, Nagarajan V, Latzke D, Wilson S, Marrufo N, Santiago P, Lara J, Diego A, Molina E, Rosser D, Tavassol H, Lanzara A, Analytis J G, and Ojeda-Aristizabal C 2020 Phys. Rev. B101 235415