Synthesis of Chemically Sharp Interface in NdNiO$_{3}$/SrTiO$_{3}$ Heterostructures
Yueying Li1,2†, Xiangbin Cai3†, Wenjie Sun1,2, Jiangfeng Yang1,2, Wei Guo1,2, Zhengbin Gu1,2, Ye Zhu3*, and Yuefeng Nie1,2*
1National Laboratory of Solid State Microstructures, Jiangsu Key Laboratory of Artificial Functional Materials, College of Engineering and Applied Sciences, Nanjing University, Nanjing 210093, China 2Collaborative Innovation Center of Advanced Microstructures, Nanjing University, Nanjing 210093, China 3Department of Applied Physics, Research Institute for Smart Energy, The Hong Kong Polytechnic University, Hong Kong 999077, China
Abstract:The nickel-based superconductivity provides a fascinating new platform to explore high-$T_{\rm c}$ superconductivity. As the infinite-layer nickelates are obtained by removing the apical oxygens from the precursor perovskite phase, the crystalline quality of the perovskite phase is crucial in synthesizing high quality superconducting nickelates. Especially, cation-related defects, such as the Ruddlesden–Popper-type (RP-type) faults, are unlikely to disappear after the topotactic reduction process and should be avoided during the growth of the perovskite phase. Herein, using reactive molecular beam epitaxy, we report the atomic-scale engineering of the interface structure and demonstrate its impact in reducing crystalline defects in Nd-based nickelate/SrTiO$_{3}$ heterostructures. A simultaneous deposition of stoichiometric Nd and Ni directly on SrTiO$_{3}$ substrates results in prominent Nd vacancies and Ti diffusion at the interface and RP-type defects in nickelate films. In contrast, inserting an extra [NdO] monolayer before the simultaneous deposition of Nd and Ni forms a sharp interface and greatly eliminates RP-type defects in nickelate films. A possible explanation related to the polar discontinuity is also discussed. Our results provide an effective method to synthesize high-quality precursor perovskite phase for the investigation of the novel superconductivity in nickelates.
Zeng S W, Tang C S, Yin X, Li C, Li M, Huang Z, Hu J, Liu W, Omar G J, Jani H, Lim Z S, Han K, Wan D, Yang P, Pennycook S J, Wee A T S, and Ariando A 2020 Phys. Rev. Lett.125 147003
[6]
Pan G A, Ferenc S D, LaBollita H, Song Q, Nica E M, Goodge B H, Pierce A T, Doyle S, Novakov S, Córdova C D, N'Diaye A T, Shafer P, Paik H, Heron J T, Mason J A, Yacoby A, Kourkoutis L F, Erten O, Brooks C M, Botana A S, and Mundy J A 2022 Nat. Mater.21 160
[7]
Tam C C, Choi J, Ding X, Agrestini S, Nag A, Wu M, Huang B, Luo H, Gao P, García-Fernández M, Qiao L, and Zhou K J 2022 Nat. Mater.21 1116
[8]
Lu H, Rossi M, Nag A, Osada M, Li D F, Lee K, Wang B Y, Garcia-Fernandez M, Agrestini S, Shen Z X, Been E M, Moritz B, Devereaux T P, Zaanen J, Hwang H Y, Zhou K J, and Lee W S 2021 Science373 213
[9]
Gu Q Q, Li Y Y, Wan S Y, Li H Z, Guo W, Yang H, Li Q, Zhu X Y, Pan X Q, Nie Y F, and Wen H H 2020 Nat. Commun.11 6027
[10]
Wang B Y, Li D F, Goodge B H, Lee K, Osada M, Harvey S P, Kourkoutis L F, Beasley M R, and Hwang H Y 2021 Nat. Phys.17 473
Wang B X, Zheng H, Krivyakina E, Chmaissem O, Lopes P P, Lynn J W, Gallington L C, Ren Y, Rosenkranz S, Mitchell J F, and Phelan D 2020 Phys. Rev. Mater.4 084409
Puphal P, Wu Y M, Fürsich K, Lee H, Pakdaman M, Bruin J A N, Nuss J, Suyolcu Y E, van Aken P A, Keimer B, Isobe M, and Hepting M 2021 Sci. Adv.7 eabl8091
[23]
Detemple E, Ramasse Q M, Sigle W, Cristiani G, Habermeier H U, Benckiser E, Boris A V, Frano A, Wochner P, Wu M, Keimer B, and van Aken P A 2011 Appl. Phys. Lett.99 211903
[24]
Middey S, Rivero P, Meyers D, Kareev M, Liu X, Cao Y, Freeland J W, Barraza-Lopez S, and Chakhalian J 2014 Sci. Rep.4 6819
Sun H Y, Mao Z W, Zhang T W, Han L, Zhang T T, Cai X B, Guo X, Li Y F, Zang Y P, Guo W, Song J H, Ji D X, Gu C Y, Tang C, Gu Z B, Wang N, Zhu Y, Schlom D G, Nie Y F, and Pan X Q 2018 Nat. Commun.9 2965