1Beijing National Laboratory for Condensed Matter Physics, Institute of Physics, Chinese Academy of Sciences, Beijing 100190, China 2Center of Materials Science and Optoelectronics Engineering, University of Chinese Academy of Sciences, Beijing 100049, China 3Songshan Lake Materials Laboratory, Dongguan 523808, China 4Institute of Advanced Materials, Beijing Normal University, Beijing 100875, China 5School of Physics and Wuhan National High Magnetic Field Center, Huazhong University of Science and Technology, Wuhan 430074, China
Abstract:Two-dimensional van der Waals magnetic materials have demonstrated great potential for new-generation high-performance and versatile spintronic devices. Among them, magnetic tunnel junctions (MTJs) based on A-type antiferromagnets, such as CrI$_{3}$, possess record-high tunneling magnetoresistance (TMR) because of the spin filter effect of each insulating unit ferromagnetic layer. However, the relatively low working temperature and the instability of the chromium halides hinder applications of this system. Using a different technical scheme, we fabricated the MTJs based on an air-stable A-type antiferromagnet, CrSBr, and observed a giant TMR of up to 47000% at 5 K. Meanwhile, because of a relatively high Néel temperature of CrSBr, a sizable TMR of about 50% was observed at 130 K, which makes a big step towards spintronic devices at room temperature. Our results reveal the potential of realizing magnetic information storage in CrSBr-based spin-filter MTJs.
Zeng Z M, Finocchio G, Zhang B S, Amiri P K, Katine J A, Krivorotov I N, Huai Y, Langer J, Azzerboni B, Wang K L, and Jiang H W 2013 Sci. Rep.3 1426
[7]
He B, Hu Y, Zhao C, Wei J, Zhang J, Zhang Y, Cheng C, Li J, Nie Z, Luo Y, Zhou Y, Zhang S, Zeng Z, Peng Y, Coey J M D, Han X, and Yu G 2023 Adv. Electron. Mater.2023 2201240
[8]
Jung S, Lee H, Myung S, Kim H, Yoon S K, Kwon S W, Ju Y, Kim M, Yi W, Han S, Kwon B, Seo B, Lee K, Koh G H, Lee K, Song Y, Choi C, Ham D, and Kim S J 2022 Nature601 211
Gong C, Li L, Li Z, Ji H, Stern A, Xia Y, Cao T, Bao W, Wang C, Wang Y, Qiu Z Q, Cava R J, Louie S G, Xia J, and Zhang X 2017 Nature546 265
[21]
Huang B V, Clark G, Navarro-Moratalla E, Klein D R, Cheng R, Seyler K L, Zhong D, Schmidgall E, McGuire M A, Cobden D H, Yao W, Xiao D, Jarillo-Herrero P, and Xu X 2017 Nature546 270
[22]
Deng Y J, Yu Y J, Song Y C, Zhang J Z, Wang N Z, Sun Z, Yi Y, Wu Y Z, Wu S, Zhu J, Wang J, Chen X H, and Zhang Y 2018 Nature563 94
[23]
Zhang X Q, Lu Q S, Liu W Q, Niu W, Sun J B, Cook J, Vaninger M, Miceli P F, Singh D J, Lian S W, Chang T R, He X, Du J, He L, Zhang R, Bian G, and Xu Y 2021 Nat. Commun.12 2492
[24]
Zhu W K, Lin H L, Yan F G, Hu C, Wang Z, Zhao L X, Deng Y, Kudrynskyi Z R, Zhou T, Kovalyuk Z D, Zheng Y, Patanè A, Žutić I, Li S, Zheng H, and Wang K 2021 Adv. Mater.33 2104658
[25]
Min K H, Lee D H, Choi S J, Lee I H, Seo J, Kim D W, Ko K T, Watanabe K, Taniguchi T, Ha D H, Kim C, Shim J H, Eom J, Kim J S, and Jung S 2022 Nat. Mater.21 1144
[26]
Zhang G J, Guo F, Wu H, Wen X K, Yang L, Jin W, Zhang W F, and Chang H X 2022 Nat. Commun.13 5067
[27]
Zhu W K, Xie S H, Lin H L, Zhang G J, Wu H, Hu T G, Wang Z, Zhang X M, Xu J, Wang Y, Zheng Y, Yan F, Zhang J, Zhao L, Patané A, Zhang J, Chang H, and Wang K 2022 Chin. Phys. Lett.39 128501
Song T C, Cai X H, Tu M W Y, Zhang X, Huang B, Wilson N P, Seyler K L, Zhu L, Taniguchi T, Watanabe K, McGuire M A, Cobden D H, Xiao D, Yao W, and Xu X 2018 Science360 1214
[31]
Wang Z, Gutiérrez-Lezama I, Ubrig N, Kroner M, Gibertini M, Taniguchi T, Watanabe K, Imamoğlu A, Giannini E, and Morpurgo A F 2018 Nat. Commun.9 2516
Ye C, Wang C, Wu Q, Liu S, Zhou J, Wang G, Söll A, Sofer Z, Yue M, Liu X, Tian M, Xiong Q, Ji W, and Renshaw W X 2022 ACS Nano16 11876
[37]
Boix-Constant C, Mañas-Valero S, Ruiz A M, Rybakov A, Konieczny K A, Pillet S, Baldoví J J, and Coronado E 2022 Adv. Mater.34 2204940
[38]
Huang Y, Pan Y H, Yang R, Bao L H, Meng L, Luo H L, Cai Y Q, Liu G D, Zhao W J, Zhou Z, Wu L M, Zhu Z L, Huang M, Liu L W, Liu L, Cheng P, Wu K H, Tian S B, Gu C Z, Shi Y G, Guo Y F, Cheng Z G, Hu J P, Zhao L, Yang G H, Sutter E, Sutter P, Wang Y L, Ji W, Zhou X J, and Gao H J 2020 Nat. Commun.11 2453
[39]
Zhang Y, Xu H, Yi C, Wang X, Huang Y, Tang J, Jiang J, He C, Zhao M, Ma T, Dong J, Guo C, Feng J, Wan C, Wei H, Du H, Shi Y, Yu G, Zhang G, and Han X 2021 Appl. Phys. Lett.118 262406
[40]
Peng Y X, Ding S L, Cheng M, Hu Q F, Yang J, Wang F G, Xue M, Liu Z, Lin Z, Avdeev M, Hou Y, Yang W, Zheng Y, and Yang J 2020 Adv. Mater.32 2001200
[41]
Lee K, Dismukes A H, Telford E J, Wiscons R A, Wang J, Xu X, Nuckolls C, Dean C R, Roy X, and Zhu X 2021 Nano Lett.21 3511
Wang X, Tang J, Xia X, He C, Zhang J, Liu Y, Wan C, Fang C, Guo C, Yang W, Guang Y, Zhang X, Xu H, Wei J, Liao M, Lu X, Feng J, Li X, Peng Y, Wei H, Yang R, Shi D, Zhang X, Han Z, Zhang Z, Zhang G, Yu G, and Han X 2019 Sci. Adv.5 eaaw8904
[49]
Shin I, Cho W J, An E S, Park S, Jeong H W, Jang S, Baek W J, Park S Y, Yang D H, Seo J H, Kim G Y, Ali M N, Choi S Y, Lee H W, Kim J S, Kim S D, and Lee G H 2022 Adv. Mater.34 2101730
[50]
Kao I H, Muzzio R, Zhang H, Zhu M, Gobbo J, Yuan S, Weber D, Rao R, Li J, Edgar J H, Goldberger J E, Yan J, Mandrus D G, Hwang J, Cheng R, Katoch J, and Singh S 2022 Nat. Mater.21 1029