Development of Intrinsic Room-Temperature 2D Ferromagnetic Crystals for 2D Spintronics
Wen Jin1,2, Gaojie Zhang1,2, Hao Wu1,2,3,4, Li Yang1,2, Wenfeng Zhang1,2,3, and Haixin Chang1,2,3,4*
1Center for Joining and Electronic Packaging, State Key Laboratory of Material Processing and Die & Mold Technology, School of Materials Science and Engineering, Huazhong University of Science and Technology, Wuhan 430074, China 2Shenzhen R&D Center of Huazhong University of Science and Technology, Shenzhen 518000, China 3Institute for Quantum Science and Engineering, Huazhong University of Science and Technology, Wuhan 430074, China 4Wuhan National High Magnetic Field Center, Huazhong University of Science and Technology, Wuhan 430074, China
Abstract:Two-dimensional (2D) ferromagnetic crystals with fascinating optical and electrical properties are crucial for nanotechnology and have a wide variety of applications in spintronics. However, low Curie temperatures of most 2D ferromagnetic crystals seriously hinder their practical applications, thus searching for intrinsic room-temperature 2D ferromagnetic crystals is of great importance for development of information technology. Fortunately, progresses have been achieved in the last few years. Here we review recent advances in the field of intrinsic room-temperature 2D ferromagnetic crystals and introduce their applications in spintronic devices based on van der Waals heterostructures. Finally, the remaining challenge and future perspective on the development direction of intrinsic room-temperature 2D ferromagnetic crystals for 2D spintronics and van der Waals spintronics are briefly summarized.
Huang B V, Clark G, Navarro-Moratalla E, Klein D R, Cheng R, Seyler K L, Zhong D, Schmidgall E, McGuire M A, Cobden D H, Yao W, Xiao D, Jarillo-Herrero P, and Xu X D 2017 Nature546 270
[10]
Gong C, Li L, Li Z, Ji H, Stern A, Xia Y, Cao T, Bao W, Wang C, Wang Y, Qiu Z Q, Cava R J, Louie S G, Xia J, and Zhang X 2017 Nature546 265
[11]
Tan C, Lee J, Jung S G, Park T, Albarakati S, Partridge J, Field M R, McCulloch D G, Wang L, and Lee C 2018 Nat. Commun.9 1554
[12]
Klein D R, MacNeill D, Song Q, Larson D T, Fang S, Xu M, Ribeiro R A, Canfield P C, Kaxiras E, Comin R, and Jarillo-Herrero P 2019 Nat. Phys.15 1255
[13]
Chen W J, Sun Z Y, Wang Z J, Gu L H, Xu X D, Wu S W, and Gao C L 2019 Science366 983
[14]
Ghazaryan D A, Greenaway M T, Wang Z, Guarochico-Moreira V H, Vera-Marun I J, Yin J, Liao Y, Morozov S V, Kristanovski O, Lichtenstein A I, Katsnelson M I, Withers F, Mishchenko A, Eaves L, DUTTASINHA S, Novoselov K S, and Misra A K 2018 Nat. Electron.1 344
[15]
Bonilla M, Kolekar S, Ma Y, Diaz H C, Kalappattil V, Das R, Eggers T, Gutierrez H R, Phan M H, and Batzill M 2018 Nat. Nanotechnol.13 289
[16]
Feng J G, Biswas D, Rajan A, Watson M D, Mazzola F, Clark O J, Underwood K, Marković I, McLaren M, Hunter A, Burn D M, Duffy L B, Barua S, Balakrishnan G, Bertran F, Le F P, Kim T K, van der Laan G, Hesjedal T, Wahl P, and King P D C 2018 Nano Lett.18 4493
[17]
Wong P K J, Zhang W, Bussolotti F, Yin X, Herng T S, Zhang L, Huang Y L, Vinai G, Krishnamurthi S, Bukhvalov D W, Zheng Y J, Chua R, N'Diaye A T, Morton S A, Yang C Y, Ou Y K H, Torelli P, Chen W, Goh K E J, Ding J, Lin M T, Brocks G, de Jong M P, Castro N A H, and Wee A T S 2019 Adv. Mater.31 1901185
[18]
Deng Y J, Yu Y J, Song Y C, Zhang J Z, Wang N Z, Sun Z, Yi Y F, Wu Y Z, Wu S, Zhu J, Wang J, Chen X H, and Zhang Y 2018 Nature563 94
Guguchia Z, Kerelsky A, Edelberg D, Banerjee S, von Rohr F, Scullion D, Augustin M, Scully M, Rhodes D A, Shermadini Z, Luetkens H, Shengelaya A, Baines C, Morenzoni E, Amato A, Hone J C, Khasanov R, Billinge S J L, Santos E, Pasupathy A N, and Uemura Y J 2018 Sci. Adv.4 eaat3672
Vinai G, Bigi C, Rajan A, Watson M D, Lee T L, Mazzola F, Modesti S, Barua S, Ciomaga H M, Balakrishnan G, King P D C, Torelli P, Rossi G, and Panaccione G 2020 Phys. Rev. B101 035404
[25]
Chua R, Zhou J, Yu X, Yu W, Gou J, Zhu R, Zhang L, Liu M, Breese M B H, Chen W, Loh K P, Feng Y P, Yang M, Huang Y L, and Wee A T S 2021 Adv. Mater.33 2103360
[26]
Yang L, Wu H, Zhang L, Zhang W, Li L, Kawakami T, Sugawara K, Sato T, Zhang G, Gao P, Muhammad Y, Wen X, Tao B, Guo F, and Chang H 2021 Adv. Funct. Mater.31 2008116
Purbawati A, Coraux J, Vogel J, Hadj-Azzem A, Wu N, Bendiab N, Jegouso D, Renard J, Marty L, Bouchiat V, Sulpice A, Aballe L, Foerster M, Genuzio F, Locatelli A, Menteş T O, Han Z V, Sun X, Núñez-Regueiro M, and Rougemaille N 2020 ACS Appl. Mater. & Interfaces12 30702
[29]
Sun X D, Li W Y, Wang X, Sui Q, Zhang T Y, Wang Z, Liu L, Li D, Feng S, and Zhong S Y 2020 Nano Res.13 3358
[30]
Wu H, Zhang W, Yang L, Wang J, Li J, Li L, Gao Y, Zhang L, Du J, Shu H, and Chang H 2021 Nat. Commun.12 5688
[31]
May A F, Ovchinnikov D, Zheng Q, Hermann R, Calder S, Huang B, Fei Z, Liu Y, Xu X, and McGuire M A 2019 ACS Nano13 4436
[32]
Seo J, Kim D Y, An E S, Kim K, Kim G Y, Hwang S Y, Kim D W, Jang B G, Kim H, Eom G, Seo S Y, Stania R, Muntwiler M, Lee J, Watanabe K, Taniguchi T, Jo Y J, Lee J, Min B I, Jo M H, Yeom H W, Choi S Y, Shim J H, and Kim J S 2020 Sci. Adv.6 eaay8912
Zhang X Q, Lu Q S, Liu W Q, Niu W, Sun J B, Cook J, Vaninger M, Miceli P F, Singh D J, Lian S W, Chang T R, He X, Du J, He L, Zhang R, Bian G, and Xu Y 2021 Nat. Commun.12 2492
[37]
Zhang G J, Wu H, Zhang L, Zhang S F, Yang L, Gao P F, Wen X K, Jin W, Guo F, Xie Y M, Li H D, Tao B, Zhang W F, and Chang H X 2022 Adv. Sci.9 2103173
[38]
Cheng R Q, Yin L, Wen Y, Zhai B X, Guo Y Z, Zhang Z F, Liao W T, Xiong W, Wang H, Yuan S, Jiang J, Liu C, and He J 2022 Nat. Commun.13 5241
Yin H F, Zhang P Z, Jin W, Di B, Wu H, Zhang G, Zhang W F, and Chang H X 2023 CrystEngComm25 1339
[42]
Zhu W K, Xie S H, Lin H L, Zhang G J, Wu H, Hu T G, Wang Z, Zhang X, Xu J, Wang Y, Zheng Y, Yan F, Zhang J, Zhao L, Patanè A, Zhang J, Chang H, and Wang K 2022 Chin. Phys. Lett.39 128501