1Institute of Physical Science and Information Technology, Anhui University, Hefei 230601, China 2School of Physical Science and Technology, Soochow University, Suzhou 215006, China 3Institute for Advanced Study, Soochow University, Suzhou 215006, China 4College of Physics and Electronic Engineering, Sichuan Normal University, Chengdu 610068, China 5Center for Computational Sciences, Sichuan Normal University, Chengdu 610068, China 6Department of Physics, Hong Kong University of Science and Technology, Clear Water Bay, Hong Kong, China
Abstract:The Magnus Hall effect (MHE) is a new type of linear-response Hall effect, recently proposed to appear in two-dimensional (2D) nonmagnetic systems at zero magnetic field in the ballistic limit. The MHE arises from a self-rotating Bloch electron moving under a gradient-electrostatic potential, analogous to the Magnus effect in the macrocosm. Unfortunately, the MHE is usually accompanied by a trivial transverse signal, which hinders its experimental observation. We systematically investigate the material realization and experimental measurement of the MHE, based on symmetry analysis and first-principles calculations. It is found that both the out-of-plane mirror and in-plane two-fold symmetries can neutralize the trivial transverse signal to generate clean MHE signals. We choose two representative 2D materials, monolayer MoS$_2$, and bilayer WTe$_2$, to study the quantitative dependency of MHE signals on the direction of the electric field. The results are qualitatively consistent with the symmetry analysis, and suggest that an observable MHE signal requires giant Berry curvatures. Our results provide detailed guidance for the future experimental exploration of MHE.
Ma Q, Xu S Y, Shen H, MacNeill D, Fatemi V, Chang T R, Mier V A M, Wu S, Du Z, Hsu C H, Fang S, Gibson Q D, Watanabe K, Taniguchi T, Cava R J, Kaxiras E, Lu H Z, Lin H, Fu L, Gedik N, and Jarillo-Herrero P 2019 Nature565 337
[11]
Xu S Y, Ma Q, Shen H, Fatemi V, Wu S, Chang T R, Chang G, Valdivia A M M, Chan C K, Gibson Q D, Zhou J, Liu Z, Watanabe K, Taniguchi T, Lin H, Cava R J, Fu L, Gedik N, and Jarillo-Herrero P 2018 Nat. Phys.14 900
See the Supplemental Material for detailed information on the first-principles calculation method, Berry curvature under $C3$ symmetry and antisymmetric characteristic of transverse current using nonequilibrium Green's function method, which includes Refs.[36–41]
Mounet N, Gibertini M, Schwaller P, Campi D, Merkys A, Marrazzo A, Sohier T, Castelli I E, Cepellotti A, Pizzi G, and Marzari N 2018 Nat. Nanotechnol.13 246
[20]
Haastrup S, Strange M, Pandey M, Deilmann T, Schmidt P S, Hinsche N F, Gjerding M N, Torelli D, Larsen P M, Riis-Jensen A C, Gath J, Jacobsen K W, Jørgen M J, Olsen T, and Thygesen K S 2018 2D Mater.5 042002
[21]
Collins J L, Tadich A, Wu W, Gomes L C, Rodrigues J N B, Liu C, Hellerstedt J, Ryu H, Tang S, Mo S K, Adam S, Yang S A, Fuhrer M S, and Edmonds M T 2018 Nature564 390
[22]
Hong Y L, Liu Z, Wang L, Zhou T, Ma W, Xu C, Feng S, Chen L, Chen M L, Sun D M, Chen X Q, Cheng H M, and Ren W 2020 Science369 670
[23]
Lu A Y, Zhu H, Xiao J, Chuu C P, Han Y, Chiu M H, Cheng C C, Yang C W, Wei K H, Yang Y, Wang Y, Sokaras D, Nordlund D, Yang P, Muller D A, Chou M Y, Zhang X, and Li L J 2017 Nat. Nanotechnol.12 744
[24]
Zhang J, Jia S, Kholmanov I, Dong L, Er D, Chen W, Guo H, Jin Z, Shenoy V B, Shi L, and Lou J 2017 ACS Nano11 8192
Jia Z Y, Song Y H, Li X B, Ran K, Lu P, Zheng H J, Zhu X Y, Shi Z Q, Sun J, Wen J, Xing D, and Li S C 2017 Phys. Rev. B96 041108(R)
[31]
Tang S, Zhang C, Wong D, Pedramrazi Z, Tsai H Z, Jia C, Moritz B, Claassen M, Ryu H, Kahn S, Jiang J, Yan H, Hashimoto M, Lu D, Moore R G, Hwang C C, Hwang C, Hussain Z, Chen Y, Ugeda M M, Liu Z, Xie X, Devereaux T P, Crommie M F, Mo S K, and Shen Z X 2017 Nat. Phys.13 683