The High Quantum Efficiency of Exponential-Doping AlGaAs/GaAs Photocathodes Grown by Metalorganic Chemical Vapor Deposition
ZHANG Yi-Jun1** , ZHAO Jing1 , ZOU Ji-Jun1,2 , NIU Jun1 , CHEN Xin-Long1 , CHANG Ben-Kang1
1 Institute of Electronic Engineering and Optoelectronic Technology, Nanjing University of Science and Technology, Nanjing 2100942 Engineering Research Center of Nuclear Technology Application (Ministry of Education), East China Institute of Technology, Nanchang 330013
Abstract :An exponential-doping structure is successfully applied to the preparation of AlGaAs/GaAs photocathodes through the metalorganic chemical vapor deposition (MOCVD) technique. The experimental results show that the quantum efficiency in the entire waveband region for the exponential-doping photocathodes grown by MOCVD is remarkably enhanced as compared to those grown by molecular beam epitaxy. As a result of the improved built-in electric fields and cathode performance parameters, the photoemission characteristics for the MOCVD-grown transmission-mode and reflection-mode AlGaAs/GaAs photocathodes are different over the wavelength region of interest.
收稿日期: 2012-11-05
出版日期: 2013-04-28
:
42.70.Gi
(Light-sensitive materials)
71.55.Eq
(III-V semiconductors)
72.10.-d
(Theory of electronic transport; scattering mechanisms)
[1] Dupuis R D 2000 IEEE J. Sel. Top. Quantum Electron. 6 1040 [2] Cheng K Y 1997 Proc. IEEE 85 1649 [3] Martinelli R U and Fisher D G 1974 Proc. IEEE 62 1339 [4] André J P, Guittard P, Hallais J and Piaget C 1981 J. Cryst. Growth 55 235 [5] Narayanan A A, Fisher D G, Erickson L P and O'Clock G D 1984 J. Appl. Phys. 56 1886 [6] Niigaki M, Nagai T, Ota M, Nihashi T and Oba K 1988 Appl. Surf. Sci. 33-34 1160 [7] Nishitani T, Tabuchi M, Takeda Y, Suzuki Y, Motoki K and Meguro T 2009 Jpn. J. Appl. Phys. 48 06FF02 [8] Shi F, Zhang Y J, Cheng H C, Zhao J, Xiong Y J and Chang B K 2011 Chin. Phys. Lett. 28 044204 [9] Zou J J, Yang Z, Qiao J L, Gao P and Chang B K 2007 Proc. SPIE 6782 67822R [10] Zhang Y J, Niu J, Zhao J, Zou J J, Chang B K, Shi F and Cheng H C 2010 J. Appl. Phys. 108 093108 [11] Niu J, Zhang Y J, Chang B K, Yang Z and Xiong Y J 2009 Appl. Opt. 48 5445 [12] Yu S, Tan T Y and G?sele U 1991 J. Appl. Phys. 69 3547 [13] Zhang Y J, Niu J, Zhao J, Xiong Y J, Ren L, Chang B K and Qian Y S 2011 Chin. Phys. B 20 118501 [14] Goorsky M S, Kuech T F, Tischler M A and Potemski R M 1991 Appl. Phys. Lett. 59 2269 [15] Antypas G A, Escher J S, Edgecumbe J and Enck R S Jr 1978 J. Appl. Phys. 49 4301 [16] Sun Y, Liu Z, Pianetta P and Lee D 2007 J. Appl. Phys. 102 074908 [17] Sinor T W, Estrera J P, Phillips D L and Rector M K 1995 Proc. SPIE 2551 130 [18] Wight D R, Oliver P E, Prentice T and Steward V W 1981 J. Cryst. Growth 55 183 [19] Vergara G, Gómez L J, Presa J and Montojo M T 1990 J. Vac. Sci. Technol. A 8 3676 [20] Zhang Y J, Chang B K, YangZ, Niu J and Zou J J 2009 Chin. Phys. B 18 4541
[1]
XU Ming**;SHEN Wei-Dong**;ZHANG Yue-Guang;ZHEN Hong-Yu;LIU Xu
. Optical Properties of BDK-Doped Highly Photosensitive Sol-Gel Hybrid Film [J]. 中国物理快报, 2011, 28(8): 84205-084205.
[2]
SHI Feng;;ZHANG Yi-Jun;CHENG Hong-Chang;ZHAO Jing;XIONG Ya-Juan;CHANG Ben-Kang**
. Theoretical Revision and Experimental Comparison of Quantum Yield for Transmission-Mode GaAlAs/GaAs Photocathodes [J]. 中国物理快报, 2011, 28(4): 44204-044204.
[3]
NIU Jun;YANG Zhi;CHANG Ben-Kang. Equivalent Method of Solving Quantum Efficiency of Reflection-Mode Exponential Doping GaAs Photocathode [J]. 中国物理快报, 2009, 26(10): 104202-104202.
[4]
WEI Lai;TENG Xue-Lei;LU Ming;ZHAO You-Yuan;MA De-Wang;DING Jian-Dong. Photoinduced Birefringence and Broadband All-Optical Photonic Switch in a Bacteriorhodopsin/Polymer Composite Film [J]. 中国物理快报, 2007, 24(12): 3416-3419.
[5]
SHI Ming;ZHAO Sheng-Min;YI Jia-Xiang;ZHAO Fu-Qun;NIU Li-Hong;LI Zhong-Yu;ZHANG Fu-Shi. Super-Resolution Recording by an Organic Photochromic Mask Layer [J]. 中国物理快报, 2007, 24(4): 994-997.
[6]
ZHANG Xue-Ru;WUTTIG Mattias. Crystallization Kinetics of Amorphous In44 Sb20 Te36 Phase-Change Optical Recording Films on a Nanosecond Scale [J]. 中国物理快报, 2004, 21(6): 1096-1099.
[7]
YAO Hua-Wen;HUANG Ming-Ju;CHEN Zhong-Yu;GAN Fu-Xi. Effects of Charge Transfer Agents on the Holographic Parameters of a Photopolymer [J]. 中国物理快报, 2002, 19(7): 947-949.
[8]
FU Li-bin;TAN Gu;XU Wan-jin;LIN Xiang-zhi;LIU Hong-du. Hydrogen Concentration Dependence of Bragg Wavelength of UV-Written Fiber Grating [J]. 中国物理快报, 1998, 15(12): 886-888.
[9]
TAN Gu;LIN Xiang-zhi;LIU Hong-du;FU Li-bin(RS)E. Y . B. Pun;P. S. Chung. Photosensitivity and Hydroxyl in Hydrogenated Silica Fibers [J]. 中国物理快报, 1998, 15(9): 657-658.
[10]
AN Hong-lin;CUI Xiao-ming;WEN Peng-yue;LIN Xiang-zhi;LIU Hong-du;E. Y. B. Pun;P. S. Chung. Loss Increase Induced by H2 Loading in GeO2 Doped Optical Fiber [J]. 中国物理快报, 1997, 14(3): 187-189.
[11]
LIU Junmin;LIU Simin;XU Jingjun;ZHANG Guangyin;
XIONG Guisheng;MEN Liqiu;GUO Ru
. Transient-State and Steady-State Light-Induced Scattering in
Photorefractive Crystal LiNbO3 : Fe
[J]. 中国物理快报, 1994, 11(5): 269-272.
[12]
GUAN Qingcai;WANG Jiyang;WANG Min;LIU Yaogang;WEI Jingqian;ZHANG Zhiguo*;YANG Changxi*;YE Peixian*. Photorefractive Properties of Paraelectric Copper Doped Potassium Tantalate Niobate [J]. 中国物理快报, 1991, 8(10): 515-517.
[13]
WANG Duoyuan*;HU Lingzhi*;HE Huizhu*;XIE Jie*;ZHANG Junyi*;ZHAO Lizeng;ZHANG Xiulan;ZHANG Dongxiang;MI Xin;NIE Yuxin;YE Peixian. NEW ORGANIC SYSTEM FOR PHOTON-GATED PERSISTENT SPECTRAL HOLE BURNING [J]. 中国物理快报, 1990, 7(12): 556-559.