Time-Grating for the Generation of STUD Pulse Trains
ZHENG Jun, WANG Shi-Wei, XU Jian-Qiu**
Key Laboratory for Laser Plasmas (Ministry of Education) and Department of Physics, Shanghai Jiao Tong University, Shanghai 200240
Abstract :Spike train of uneven duration or delay (STUD) pulses hold potential for laser-plasma interaction (LPI) control in laser fusion. The technique based on time grating is applied to generate an STUD pulse train. Time grating, a temporal analogy of the diffraction grating, can control the pulse width, shape, and repetition rate easily through the use of electro-optical devices. The pulse width and repetition rate are given by the modulation frequency and depth of the phase modulation function in theory and numerical calculation. The zero-chirped phase modulation is good for the compression effect of the time grating. A principle experiment of two pulses interfering is shown to verify the time grating function.
收稿日期: 2012-10-10
出版日期: 2013-04-28
[1] Afeyan B, Mardirian M Garnier J and Hueller S 2011 International workshop on ICF shock ignition (LLE, Rochester, NY, 8–10 March 2011) [2] Fu S G, Guo Z C, Si L B, Zhao Y, Yuan S Z and Dong X Y 2007 Chin. Phys. Lett. 24 1264 [3] Fortier T M, Bartels A and Diddams S A 2006 Opt. Lett. 31 1011 [4] Kim D, Kutz J N and Muraki D J 2000 IEEE J. Sel. Top. Quantum Electron. 36 465 [5] Keller U 2003 Nature 424 831 [6] Bonaccorso F, Sun Z, Hasan T and Ferrari A C 2010 Nat. Photon. 4 611 [7] Bao Q, Zhang H, Wang Y, Ni Z, Yan Y, Shen Z X, Loh K P and Tang D Y 2009 Adv. Funct. Mater. 19 3077 [8] Dai Y and Xu C 2009 Opt. Express 17 6584 [9] van Home J, Lee J H and Xu C 1999 Opt. Lett. 32 1408 [10] Khayim T, Yamauchi M, Kim D and Kobayashi T 1999 IEEE J. Quantum Electron. 35 1412 [11] Xin R and Zuegel J D 2011 Opt. Lett. 36 2605 [12] Xin R and Zuegel J D 2010 OSA Technical Digest Series, Conference of Advanced Solid-State Photonics (San Diego, California, 31 January–3 February 2010) [13] Tan H N, Nguyen-The Q, Matsuura M and Kishiet N 2012 J. Lighwave Technol. 30 853 [14] Zheng J, Wang S W and Xu J Q 2013 J. Opt. Soc Am. B (accept) [15] Wang S W, Zheng J and Xu J Q 2013 Chin. Opt. Lett (accept) [16] Roth M, Cowan T E, Key M H, Hatchett S P, Brown C Fountain W, Johnson J, Pennington D M, Snavely R A, Wilks S C Yasuike K, Ruhl H, Pegoraro F, Bulanov S V, Campbell E M, Perry M D and Powell H 2001 Phys. Rev. Lett. 86 436 [17] Chen D T, Fetterman H R, Chen A T, Steier W, Dalton L, Wang W S and Shi Y Q 1997 Appl. Phys. Lett. 70 3335
[1]
. [J]. 中国物理快报, 2023, 40(2): 24201-.
[2]
. [J]. 中国物理快报, 2022, 39(2): 24201-.
[3]
. [J]. 中国物理快报, 2021, 38(9): 94201-.
[4]
. [J]. 中国物理快报, 0, (): 64202-.
[5]
. [J]. 中国物理快报, 2020, 37(6): 64202-.
[6]
. [J]. 中国物理快报, 2019, 36(10): 104202-.
[7]
. [J]. 中国物理快报, 2019, 36(7): 74203-.
[8]
. [J]. 中国物理快报, 2019, 36(5): 54202-.
[9]
. [J]. 中国物理快报, 2018, 35(11): 114202-.
[10]
. [J]. 中国物理快报, 2018, 35(11): 114203-.
[11]
. [J]. 中国物理快报, 2018, 35(10): 104201-.
[12]
. [J]. 中国物理快报, 2018, 35(8): 84201-.
[13]
. [J]. 中国物理快报, 2018, 35(5): 54201-.
[14]
. [J]. 中国物理快报, 2018, 35(4): 44201-.
[15]
. [J]. 中国物理快报, 2018, 35(4): 44204-.