Nonlinear Hall Effect in Antiferromagnetic Half-Heusler Materials
Cheng Chen1†, Huaiqiang Wang1†, Zhilong Yang1, and Haijun Zhang1,2*
1National Laboratory of Solid State Microstructures, School of Physics, Nanjing University, Nanjing 210093, China 2Collaborative Innovation Center of Advanced Microstructures, Nanjing University, Nanjing 210093, China
Abstract:It has recently been demonstrated that various topological states, including Dirac, Weyl, nodal-line, and triple-point semimetal phases, can emerge in antiferromagnetic (AFM) half-Heusler compounds. However, how to determine the AFM structure and to distinguish different topological phases from transport behaviors remains unknown. We show that, due to the presence of combined time-reversal and fractional translation symmetry, the recently proposed second-order nonlinear Hall effect can be used to characterize different topological phases with various AFM configurations. Guided by the symmetry analysis, we obtain expressions of the Berry curvature dipole for different AFM configurations. Based on the effective model, we explicitly calculate the Berry curvature dipole, which is found to be vanishingly small for the triple-point semimetal phase, and large in the Weyl semimetal phase. Our results not only put forward an effective method for the identification of magnetic orders and topological phases in AFM half-Heusler materials, but also suggest these materials as a versatile platform for engineering the nonlinear Hall effect.
收稿日期: 2021-01-07
出版日期: 2021-05-02
引用本文:
. [J]. 中国物理快报, 2021, 38(5): 57302-.
Cheng Chen, Huaiqiang Wang, Zhilong Yang, and Haijun Zhang. Nonlinear Hall Effect in Antiferromagnetic Half-Heusler Materials. Chin. Phys. Lett., 2021, 38(5): 57302-.
Yu R, Zhang W, Zhang H J, Zhang S C, Dai X, and Fang Z 2010 Science329 61
[7]
Chang C Z, Zhang J, Feng X, Shen J, Zhang Z, Guo M, Li K, Ou Y, Wei P, Wang L L, Ji Z Q, Feng Y, Ji S, Chen X, Jia J, Dai X, Fang Z, Zhang S C, He K, Wang Y, Lu L, Ma X C, and Xue Q K 2013 Science340 167
Sun H H, Zhang K W, Hu L H, Li C, Wang G Y, Ma H Y, Xu Z A, Gao C L, Guan D D, Li Y Y, Liu C, Qian D, Zhou Y, Fu L, Li S C, Zhang F C, and Jia J F 2016 Phys. Rev. Lett.116 257003
[19]
Zhang P, Yaji K, Hashimoto T, Ota Y, Kondo T, Okazaki K, Wang Z, Wen J, Gu G D, Ding H, and Shin S 2018 Science360 182
[20]
Fang Y, Pan J, Zhang D, Wang D, Hirose H T, Terashima T, Uji S, Yuan Y, Li W, Tian Z, Xue J, Ma Y, Zhao W, Xue Q, Mu G, Zhang H, and Huang F 2019 Adv. Mater.31 1901942
[21]
Yuan Y, Pan J, Wang X, Fang Y, Song C, Wang L, He K, Ma X, Zhang H, Huang F, Li W, and Xue Q K 2019 Nat. Phys.15 1046
Shekhar C, Kumar N, Grinenko V, Singh S, Sarkar R, Luetkens H, Wu S C, Zhang Y, Komarek A C, Kampert E, Skourski Y, Wosnitza J, Schnelle W, McCollam A, Zeitler U, Kübler J, Yan B, Klauss H H, Parkin S S P, and Felser C 2018 Proc. Natl. Acad. Sci. USA115 9140
[39]
Suzuki T, Chisnell R, Devarakonda A, Liu Y T, Feng W, Xiao D, Lynn J W, and Checkelsky J G 2016 Nat. Phys.12 1119
Xu S Y, Ma Q, Shen H, Fatemi V, Wu S, Chang T R, Chang G, Valdivia A M M, Chan C K, Gibson Q D, Zhou J, Liu Z, Watanabe K, Taniguchi T, Lin H, Cava R J, Fu L, Gedik N, and Jarillo-Herrero P 2018 Nat. Phys.14 900
Ma Q, Xu S Y, Shen H, MacNeill D, Fatemi V, Chang T R, Mier V A M, Wu S, Du Z, Hsu C H, Fang S, Gibson Q D, Watanabe K, Taniguchi T, Cava R J, Kaxiras E, Lu H Z, Lin H, Fu L, Gedik N, and Jarillo-Herrero P 2019 Nature565 337