Time-Resolved Study of Pseudogap and Superconducting Quasiparticle Dynamics in Ca$_{0.82}$La$_{0.18}$Fe$_{1-x}$Ni$_{x}$As$_{2}$
Cong-Ying Jiang1, Hai-Ying Song1, T. Xie2,3, C. Liu2,3, H. Q. Luo2,4, S. Z. Zhao1, Xiu Zhang1, X. C. Nie1, Jian-Qiao Meng5, Yu-Xia Duan5, H. Y. Liu1,6**, Shi-Bing Liu1**
1Strong-Field and Ultrafast Photonics Lab, Beijing Engineering Research Center of Laser Technology, Institute of Laser Engineering, Beijing University of Technology, Beijing 100124, China 2Beijing National Laboratory for Condensed Matter Physics, Institute of Physics, Chinese Academy of Sciences, Beijing 100190, China 3School of Physical Sciences, University of Chinese Academy of Sciences, Beijing 100190, China 4Songshan Lake Materials Laboratory, Dongguan 523808, China 5School of Physics and Electronics, Central South University, Changsha 410083, China 6Beijing Academy of Quantum Information Sciences, Beijing 100193, China
Abstract:We use femtosecond time-resolved optical reflectivity to study the photoexcited quasiparticle (QP) dynamics in the iron-based 112 type superconducting (SC) samples Ca$_{0.82}$La$_{0.18}$Fe$_{1-x}$Ni$_{x}$As$_{2}$, with $x = 0$ and 0.024. In the parent sample, a fast and a slow relaxation emerge at temperatures below the magnetic-structure (MS) transition $T_{\rm ms} \approx 50$ K and the SC transition $T_{\rm c} \approx 33$ K, respectively. The latter obviously corresponds to an SC QP dynamics, which is further confirmed in the $x = 0.024$ sample with $T_{\rm c} \approx 25$ K. The former suggests that a partial of photoexcited QP relaxation through a pesudogap (PG) channel, which is absent in the doped $x = 0.024$ sample without the MS transition.
. [J]. 中国物理快报, 2020, 37(6): 67401-.
Cong-Ying Jiang, Hai-Ying Song, T. Xie, C. Liu, H. Q. Luo, S. Z. Zhao, Xiu Zhang, X. C. Nie, Jian-Qiao Meng, Yu-Xia Duan, H. Y. Liu, Shi-Bing Liu. Time-Resolved Study of Pseudogap and Superconducting Quasiparticle Dynamics in Ca$_{0.82}$La$_{0.18}$Fe$_{1-x}$Ni$_{x}$As$_{2}$. Chin. Phys. Lett., 2020, 37(6): 67401-.
Tanaka K, Lee W S, Lu D H, Fujimori A, Fujii T, Risdiana, Terasaki I, Scalapino D J, Devereaux T P, Hussain Z and Shen Z X 2006 Science314 1910
[2]
Lee W S, Vishik I M, Tanaka K, Lu D H, Sasagawa T, Nagaosa N, Devereaux T P, Hussain Z and Shen Z X 2007 Nature450 81
[3]
Kondo T, Khasanov R, Takeuchi T, Schmalian J and Kaminski A 2009 Nature457 296
[4]
Hashimoto M, Nowadnick E A, He R H, Vishik I M, Moritz B, He Y, Tanaka K, Moore R G, Lu D H, Yoshida Y, Ishikado M, Sasagawa T, Fujita K, Ishida S, Uchida S, Eisaki H, Hussain Z, Devereaux T P and Shen Z X 2015 Nat. Mater.14 37
Kanigel A, Chatterjee U, Randeria M, Norman M R, Souma S, Shi M, Li Z Z, Raffy H and Campuzano J C 2007 Phys. Rev. Lett.99 157001
[7]
Meng J Q, Zhang W T, Liu G D, Zhao L, Liu H Y, Jia X W, Lu W, Dong X L, Wang G L, Zhang H B, Zhou Y, Zhu Y, Wang X Y, Zhao Z X, Xu Z Y, Chen C T and Zhou X J 2009 Phys. Rev. B79 024514
Chen G F, Li Z, Li G, Hu W Z, Dong J, Zhou J, Zhang X D, Zheng P, Wang N L and Luo J L 2008 Chin. Phys. Lett.25 3403
[13]
Chu C W, Chen F, Gooch M, Guloy A M, Lorenz B, Lv B, Sasmal K, Tang Z J, Tapp J H and Xue Y Y 2009 Physica C469 326
[14]
Ahilan K, Ning F L, Imai T, Sefat A S, Jin R, McGuire M A, Sales B C and Mandrus D 2008 Phys. Rev. B78 100501
[15]
Xu Y M, Richard P, Nakayama K, Kawahara T, Sekiba Y, Qian T, Neupane M, Souma S, Sato T, Takahashi T, Luo H Q, Wen H H, Chen G F, Wang N L, Wang Z, Fang Z, Dai X and Ding H 2011 Nat. Commun.2 392
[16]
Zhao L, Liu H Y, Zhang W T, Meng J Q, Jia X W, Liu G D, Dong X L, Chen G F, Luo J L, Wang N L, Lu W, Wang G L, Zhou Y, Zhu Y, Wang X Y, Xu Z Y, Chen C T and Zhou X J 2008 Chin. Phys. Lett.25 4402
[17]
Lin K H, Wang K J, Chung C C, Wen Y C, Tsai D H, Wu Y R, Hsieh Y T, Wang M J, Lv B, Chu C W and Wu M K 2014 Phys. Rev. B90 174502
[18]
Jia X W, Liu H Y, Zhang W T, Zhao L, Meng J Q, Liu G D, Dong X L, Wu Gang, Liu R H, Chen X H, Ren Z A, Yi W, Che G C, Chen G F, Wang N L, Wang G L, Zhou Y, Zhu Y, Wang X Y, Zhao Z X, Xu Z Y, Chen C T and Zhou X J 2008 Chin. Phys. Lett.25 3765
[19]
Liu H Y, Jia X W, Zhang W T, Zhao L, Meng J Q, Liu G D, Dong X L, Wu G, Liu R H, Chen X H, Ren Z A, Yi W, Che G C, Chen G F, Wang N L, Wang G L, Zhou Y, Zhu Y, Wang X Y, Zhao Z X, Xu Z Y, Chen C T and Zhou X J 2008 Chin. Phys. Lett.25 3761
Chia E E M, Talbayev D, Zhu J X, Yuan H Q, Park T, Thompson J D, Panagopoulos C, Chen G F, Luo J L, Wang N L and Taylor A J 2010 Phys. Rev. Lett.104 027003
Mertelj T, Kusar P, Kabanov V V, Stojchevska L, Zhigadlo N D, Katrych S, Bukowski Z, Karpinski J, Weyeneth S and Mihailovic D 2010 Phys. Rev. B81 224504
[27]
Liu X, Liu D F, Zhao L, Guo Q, Mu Q G, Chen D Y, Shen Bing, Yi H M, Huang J W, He J F, Peng Y Y, Liu Y, He S L, Liu G D, Dong X L, Zhang J, Chen C T, Xu Z Y, Ren Z A and Zhou X J 2013 Chin. Phys. Lett.30 127402
[28]
Jiang S, Liu C, Cao H B, Birol T, Allred J M, Tian W, Liu L, Cho K, Krogstad M J, Ma J, Taddei K M, Tanatar M A, Hoesch M, Prozorov R, Rosenkranz S, Uemura Y J, Kotliar G and Ni N 2016 Phys. Rev. B93 054522