Continuously Doping Bi$_{2}$Sr$_{2}$CaCu$_{2}$O$_{8+\delta}$ into Electron-Doped Superconductor by CaH$_{2}$ Annealing Method
Jin Zhao1,2†, Yu-Lin Gan1,2†, Guang Yang1,2†, Yi-Gui Zhong1,2,3, Cen-Yao Tang1,2, Fa-Zhi Yang1,2, Giao Ngoc Phan1, Qiang-Tao Sui1,2, Zhong Liu1, Gang Li1, Xiang-Gang Qiu1, Qing-Hua Zhang1, Jie Shen1, Tian Qian1,4, Li Lu1, Lei Yan1, Gen-Da Gu5, and Hong Ding1,2,4*
1Beijing National Laboratory for Condensed Matter Physics, and Institute of Physics, Chinese Academy of Sciences, Beijing 100190, China 2School of Physics, University of Chinese Academy of Sciences, Beijing 100190, China 3Institute for Solid State Physics, University of Tokyo, Chiba 277-8581, Japan 4Songshan Lake Materials Laboratory, Dongguan 523808, China 5Condensed Matter Physics and Materials Science Department, Brookhaven National Laboratory, Upton, New York 11973, USA
Abstract:As a typical hole-doped cuprate superconductor, Bi$_{2}$Sr$_{2}$CaCu$_{2}$O$_{8+\delta}$(Bi2212) carrier doping is mostly determined by its oxygen content. Traditional doping methods can regulate its doping level within the range of hole doping. Here we report the first application of CaH$_{2}$ annealing method in regulating the doping level of Bi2212. By continuously controlling the anneal time, a series of differently doped samples can be obtained. The combined experimental results of x-ray diffraction, scanning transmission electron microscopy, resistance and Hall measurements demonstrate that the CaH$_{2}$ induced topochemical reaction can effectively change the oxygen content of Bi2212 within a very wide range, even switching from hole doping to electron doping. We also found evidence of a low-$T_{\rm c}$ superconducting phase in the electron doping side.
Hu C, Zhao J F, Gao Q, Yan H T, Rong H T, Huang J W, Liu J, C, Y Q, Li C, Chen H, Zhao L, Liu G D, Jin C Q, Xu Z Y, Xiang T, and Zhou X J 2021 Nat. Commun.12 1356
Zhong Y, Fan J Q, Wang R F, Wang S Z, Zhang X F, Zhu Y Y, Dou Z Y, Yu X Q, Wang Y, Zhang D, Zhu J, Song C L, Ma X C, and Xue Q K 2020 Phys. Rev. Lett.125 077002
[16]
Zeng S W, Wang X, Lü W M, Huang Z, Motapothula M, Liu Z Q, Zhao Y L, Annadi A, Dhar S, Mao H, Chen W, Venkatesan T, and A 2012 Phys. Rev. B86 045124
[17]
Zhong Y G, Guan J Y, Shi X, Zhao J, Rao Z C, Tang C Y, Liu H J, Weng Z Y, Wang Z Q, Gu G D, Qian T, Sun Y J, and Ding H 2018 Phys. Rev. B98 140507
[18]
Zhong Y G, Guan J Y, Zhao J, Tang C Y, Rao Z C, Liu H J, Zhang J H, Li S, Weng Z Y, Gu G D, Sun Y J, and Ding H 2019 Phys. Rev. B100 184504
[19]
Tang C Y, Lin Z F, Zhang J X, Guo X C, Guan J Y, Gao S Y, Rao Z C, Zhao J, Huang Y B, Qian T, Weng Z Y, Jin K, Sun Y J, and Ding H 2021 Phys. Rev. B104 155125
[20]
Li D F, Lee K, Wang B Y, Osada M, Crossley S, Lee H R, Cui Y, Hikita Y, and Hwang H Y 2019 Nature572 624
Jindal A, Jangade D A, Kumar N, Vaidya J, Das I, Bapat R, Parmar J, Chalke B A, Thamizhavel A, and Deshmukh M M 2017 Sci. Rep.7 3295
[23]
Song D S, Zhang X F, Lian C S L H, Alexandrou I, Lazić I, Bosch E G T, Zhang D, Wang L L, Yu R, Cheng Z Y, Song C L, Ma X C, Duan W H, Xue Q K, and Zhu J 2019 Adv. Funct. Mater.29 1903843
[24]
Presland M R, Tallon J L, Buckley R G, Liu R S, and Flower N E 1991 Physica C176 95
Quaranta Q, Gades L M, Xue C, Divan R, Patel U M, Guruswamy T, and Miceli A 2021 arXiv:2111.02503 [cond-mat.mtrl-sci]
[28]
Thiery N, Naletov V V, Vila L, Marty A, Brenac A, Jacquot J F, Loubens G D, Viret M, Anane A, Cros V, Youssef J B, Beaulieu N, Demidov V E, Divinskiy B, Demokritov S O, and Klein O 2018 Phys. Rev. B97 064422
[29]
Prakash O, Kumar A, Thamizhavel A, and Ramakrishnan S 2017 Science355 52
[30]
Medina J C, Bizarro M, Silva-Bermudez P, Giorcelli M, Tagliaferro A, and Rodil S E 2016 Thin Solid Films612 72