A Modified Lattice Model of the Reversible Effect of Axial Strain on the Critical Current of Polycrystalline REBa2 Cu3 O7−δ Films
GOU Xiao-Fan** , ZHU Guang
College of Mechanics and Materials, Hohai University, Nanjing 210098
Abstract :The strain effect on the critical current is one of the most important properties for polycrystalline YBa2 Cu3 O7−δ (REBCO, RE: rare earth) films, in which the reversible effect is intrinsic in the range of strain 0 and the irreversible strain εirr . By introducing the applied strain, a modified lattice model combining the strain and misorientation of grain boundaries (GBs) in the REBCO film is developed. A good agreement of the calculation on the lattice model with the experimental data shows that the lattice model is able to well describe the reversible effect of axial strain on the critical current of the REBCO film, and provides a good understanding of the mechanism of the reversible effect of the strain. Moreover, the effects of the crystallographic texture of the REBCO film and the residual strain ε r on the variation of the critical current with the applied strain are extensively investigated. Furthermore, by using the developed lattice model, the irreversible strain ε irr of the REBCO film can be theoretically determined by comparing the calculation of the critical current-strain curve with the experimental data.
出版日期: 2015-02-26
:
74.72.-h
(Cuprate superconductors)
74.78.-w
(Superconducting films and low-dimensional structures)
74.25.Ld
(Mechanical and acoustical properties, elasticity, and ultrasonic Attenuation)
[1] Gou X and Shen Q 2012 Physica C 475 5
[2] Gou X and Schwartz J 2013 Supercond. Sci. Technol. 26 055016
[3] Schwartz J, Effio T, Liu X, Le Q V, Mbaruku A L, Schneider-Muntau H J, Shen T, Song H, Trociewitz U P, Wang X and Weijers H W 2008 IEEE Trans. Appl. Supercond. 18 70
[4] Miao H, Marken K R, Meinesz M, Czabaj B and Seung H 2005 IEEE Trans. Appl. Supercond. 15 2554
[5] Lu X F, Goodrich L F, van der Laan D C, Splett J D, Cheggour N, Holesinger T G and Baca F J 2012 IEEE Trans. Appl. Supercond. 22 8400307
[6] Yong H D, Xue F and Zhou Y H 2011 J. Appl. Phys. 110 033905
[7] van der Laan D C, Haugan T J and Barnes P N 2009 Phys. Rev. Lett. 103 027005
[8] Lee P J 2013 Engineering Critical Current Density versus Applied Field (Tallahassee, FL, USA: Applied Superconductiviity Center, National High Magnetic Field Laboratory, Florida State University)
[9] Thieme C L H, Fleshler E, Buczek D M, Jowett M, Fritzemeier L G, Arendt P N, Foltyn S R, Coulter J Y and Willis J O 1999 IEEE Trans. Appl. Supercond. 9 1494
[10] Cheggour N, Ekin J W, Clickner C C, Verebelyi D T, Thieme C L H, Feenstra R and Goyal A 2003 Appl. Phys. Lett. 83 4223
[11] Sugano M, Osamura K, Prusseit W, Semerad R, Itoh K and Kiyoshi T 2005 Supercond. Sci. Technol. 18 369
[12] Shin H S, Dizon J R C, Ko R K, Kim T H, Ha D W and Oh S S 2007 Physica C 463 736
[13] Shin H S, Kim K H, Dizon J R C, Kim T Y, Ko R K and Oh S S 2005 Supercond. Sci. Technol. 18 S364
[14] Cheggour N, Ekin J W, Thieme C L H, Xie Y Y, Selvamanickam V and Feenstra R 2005 Supercond. Sci. Technol. 18 S319
[15] van der Laan D C and Ekin J W 2007 Appl. Phys. Lett. 90 052506
[16] Klie R F, Buban J P, Varela M, Franceschetti A, Jooss C, Zhu Y, Browning N D, Pantelides S T and Pennycook S J 2005 Nature 435 475
[17] van der Laan D C, Haugan T J, Barnes P N, Abraimov D, Kametani F, Larbalestier D C and Rupich M W 2010 Supercond. Sci. Technol. 23 014004
[18] Dimos D, Chaudhari P, Mannhart J and LeGoues F K 1988 Phys. Rev. Lett. 61 219
[19] Hilgenkamp H and Mannhart J 1998 Appl. Phys. Lett. 73 265
[20] Verebelyi D T, Christen D K, Feenstra R, Cantoni C, Goyal A, Lee D F, Paranthaman M, Arendt P N, DePaula R F, Groves J R and Prouteau C 2000 Appl. Phys. Lett. 76 1755
[21] Zhu G and Gou X F 2005 The 12th International Conference of Numerical Analysis and Applied Mathematics (Rhodes, Greece 22–28 September 2014)
[22] Holzapfel B, Fernandez L, Schindler F, de Boer B, Reger N, Eickemeyer J, Berberich P and Prusseit W 2001 IEEE Trans. Appl. Supercond. 11 3872
[23] Rhyner J and Blatter G 1989 Phys. Rev. B 40 829
[24] Ford J M, Wheeler J and Movchan A B 2002 Acta Mater. 50 3941
[25] Rutter N A and Glowacki B A 2001 Supercond. Sci. Technol. 14 680
[26] Rutter N A, Glowacki B A and Evetts J E 2000 Supercond. Sci. Technol. 13 L25
[27] Goyal A, Paranthaman M P and Schoop U 2004 MRS Bull. 29 552
[28] Goyal A, Lee D F, List F A, Specht E D, Feenstra R, Paranthaman M, Cui X, Lu S W, Martin P M, Kroeger D M, Christen D K, Kang B W, Norton D P, Park C, Verebelyi D T, Thompson J R, Williams R K, Aytug T and Cantoni C 2001 Physica C 357 Part 2 903
[29] Shin H S, Kim K H, Dizon R, John C, Kim T Y, Ko R K and Oh S S 2005 Supercond. Sci. Technol. 18 S364
[30] Locquet J P, Perret J, Fompeyrine J, Machler E, Seo J W and Van Tendeloo G 1998 Nature 394 453
[31] Zhang Z, Chen W and Gou X 2014 J. Supercond. Novel Magn. 27 1387
[32] Sugano M, Shikimachi K, Hirano N and Nagaya S 2010 Supercond. Sci. Technol. 23 085013
[1]
. [J]. 中国物理快报, 2023, 40(3): 37401-.
[2]
. [J]. 中国物理快报, 2023, 40(3): 37402-.
[3]
. [J]. 中国物理快报, 2023, 40(1): 17403-.
[4]
. [J]. 中国物理快报, 2022, 39(7): 77402-.
[5]
. [J]. 中国物理快报, 2022, 39(7): 77403-077403.
[6]
. [J]. 中国物理快报, 2018, 35(1): 17401-.
[7]
. [J]. 中国物理快报, 2016, 33(12): 127402-127402.
[8]
. [J]. 中国物理快报, 2016, 33(07): 77401-077401.
[9]
. [J]. 中国物理快报, 2016, 33(06): 67403-067403.
[10]
. [J]. 中国物理快报, 2014, 31(2): 27402-027402.
[11]
. [J]. 中国物理快报, 2013, 30(5): 57401-057401.
[12]
. [J]. 中国物理快报, 2012, 29(10): 107402-107402.
[13]
CHANG Hao-Ran**,WANG Jing-Rong,WANG Jing. Influence of Fermion Velocity Renormalization on Dynamical Mass Generation in QED3 [J]. 中国物理快报, 2012, 29(5): 57401-057401.
[14]
Minoru SUZUKI;Kenji HAMADA;Ryota TAKEMURA;Masayuki OHMAKI;Itsuhiro KAKEYA. Overdoped High Current Density Bi2-x Pbx Sr2 CaCu2 O8+ δ Intrinsic Josephson Junction Mesas and Their Switching Current Distributions [J]. 中国物理快报, 2010, 27(8): 87406-087406.
[15]
CHEN Lei-Ming;LI Guang-Cheng;ZHANG Yan;GUO Yan-Feng. Film Thickness Dependence of Rectifying Properties of La1.85 Sr0.15 CuO4 /Nb-SrTiO3 Junctions [J]. 中国物理快报, 2010, 27(7): 77401-077401.