Small and thin mesa structures of intrinsic Josephson junctions 1-28201;μm on a side and 1.5-7.5 nm in thickness are fabricated from single crystals of Bi2-xPbxSr2CaCu2O8+δ with a nominal Pb content x from 0.2 to 0.5. The Josephson critical current density jc is found to be pronouncedly large, ranging from 10 to 50 kA/cm2. Switching current probability measurements for these mesa samples show an indication of a crossover to the macroscopic quantum tunneling region.
Small and thin mesa structures of intrinsic Josephson junctions 1-28201;μm on a side and 1.5-7.5 nm in thickness are fabricated from single crystals of Bi2-xPbxSr2CaCu2O8+δ with a nominal Pb content x from 0.2 to 0.5. The Josephson critical current density jc is found to be pronouncedly large, ranging from 10 to 50 kA/cm2. Switching current probability measurements for these mesa samples show an indication of a crossover to the macroscopic quantum tunneling region.
Minoru SUZUKI;Kenji HAMADA;Ryota TAKEMURA;Masayuki OHMAKI;Itsuhiro KAKEYA. Overdoped High Current Density Bi2-xPbxSr2CaCu2O8+δ Intrinsic Josephson Junction Mesas and Their Switching Current Distributions[J]. 中国物理快报, 2010, 27(8): 87406-087406.
Minoru SUZUKI, Kenji HAMADA, Ryota TAKEMURA, Masayuki OHMAKI, Itsuhiro KAKEYA. Overdoped High Current Density Bi2-xPbxSr2CaCu2O8+δ Intrinsic Josephson Junction Mesas and Their Switching Current Distributions. Chin. Phys. Lett., 2010, 27(8): 87406-087406.
[1] Kleiner R, Seinmeyer F, Kunkel G and M üller P 1992 Phys. Rev. Lett. 68 2394 [2] Oya G, Aoyama N, Irie A, Kishida S and Tokutaka H 1992 Jpn. J. Appl. Phys. 31 L829 [3] Kleiner R and M üller P 1994 Phys. Rev. B 49 1327 [4] Suzuki M, Watanabe T and Matsuda A 1999 Phys. Rev. Lett. 82 5361 [5] Inomata K, Sato S, Nakajima K, Tanaka A, Takano Y, Wang H B, Nagao M, Hatano H and Kawabata S 2005 Phys. Rev. Lett. 95 107005 [6] Jin X Y, Lisenfeld J, Koval Y, Lukashenko A, Ustinov A V and M üller P 2006 Phys. Rev. Lett. 96 177003 [7] Kashiwaya H, Matsumoto T, Shibata H, Kashiwaya S, Eisaki H, Yoshida Y, Kawabata S and Tanaka Y 2008 J. Phys. Soc. Jpn. 77 104708 [8] Li S X, Qiu W, Han S, Wei Y F, Zhu X B, Gu C Z, Zhao S P and Wang H B 2007 Phys. Rev. Lett. 99 037002 [9] Ota K, Hamada K, Takemura R, Ohmaki M, Machi T, Tanabe K, Suzuki M, Maeda A and Kitano H 2009 Phys. Rev. B 79 134505 [10] Kim N, Doh Y J, Chang H S and Lee H J 1999 Phys. Rev. B 59 14639 [11] Anagawa K, Watanabe T and Suzuki M 2006 Phys. Rev. B 73 184512 [12] You L X, Yurgens A, Winkler D, Torstensson M, Watauchi S and Tanaka I 2006 Supercond. Sci. Technol. 19 S209 [13] Suzuki M, Ohmaki M, Takemura R, Hamada K, Watanabe T, Ota K, Kitano H and Maeda A 2008 J. Phys. Conf. Ser. 129 012033 [14] Zhao S P, Zhu X B, Wei Y F, Chen G H, Yang Q S and Lin C T 2005 Phys. Rev. B 72 184511 [15] Zhu X B, Wei Y F, Zhao S P, Chen G H, Yang H F, Jin A Z and Gu C Z 2006 Phys. Rev. B 73 224501 [16] Doh Y J, Lee H J and Chang H S 2000 Phys. Rev. B 61 3620 [17] Castellano M G, Torrioli G, Cosmelli C, Constantini A, Chiarello F, Carelli P, Rotoli G, Cirillo M and Kautz R L 1996 Phys. Rev. B 54 15417 [18] Kleiner R, M üller P, Kohlstedt H, Pedersen N F and Sakai S 1994 Phys. Rev. B 50 3942 [19] Kawakami T and Suzuki M 2007 Phys. Rev. B 76 134503 [20] Däumling M and Chandrashekhar G V 1992 Phys. Rev. B 46 6422 [21] Krasnov V M, Bauch T, Intiso S, Fürfeld E, Akazaki T, Takayanagi H and Delsing P 2005 Phys. Rev. Lett. 95 157002