1Institute of Physics, Chinese Academy of Sciences, Beijing 100190 2School of Physics, University of Chinese Academy of Sciences, Beijing 100190 3Songshan Lake Materials Laboratory, Guangdong 523808 4School of Materials Science and Engineering, Nanjing University of Science and Technology, Nanjing 210094 5Institute of High Energy Physics, Chinese Academy of Sciences, Beijing 100049
Abstract:Recently, $\theta$-TaN was proposed to be a topological semimetal with a new type of triply degenerate nodal points. Here, we report studies of pressure dependence of transport, Raman spectroscopy and synchrotron x-ray diffraction on $\theta$-TaN up to 61 GPa. We find that $\theta$-TaN becomes superconductive above 24.6 GPa with $T_{\rm c}$ at 3.1 K. The $\theta$-TaN is of n-type carrier nature with carrier density about $1.1\times 10^{20}$/cm$^{3}$ at 1.2 GPa and 20 K, while the carrier density increases with the pressure and saturates at about 40 GPa in the measured range. However, there is no crystal structure transition with pressure up to 39 GPa, suggesting the topological nature of the pressure induced superconductivity.
Hor Y S, Williams A J, Checkelsky J G, Roushan P, Seo J, Xu Q, Zandbergen H W, Yazdani A, Ong N P and Cava R J 2010 Phys. Rev. Lett.104 057001
[8]
Zhang J L, Zhang S J, Weng H M, Zhang W, Yang L X, Liu Q Q, Feng S M, Wang X C, Yu R C, Cao L Z, Wang L, Yang W G, Liu H Z, Zhao W Y, Zhang S C, Dai X, Fang Z and Jin C Q 2011 Proc. Natl. Acad. Sci. USA108 24
Sato T, Tanaka Y, Nakayama K, Souma S, Takahashi T, Sasaki S, Ren Z, Taskin A, Segawa K and Ando Y 2013 Phys. Rev. Lett.110 206804
[11]
Kirshenbaum K, Syers P S, Hope A P, Butch N P, Jeffries J R, Weir S T, Hamlin J J, Maple M B, Vohra Y K and Paglione J 2013 Phys. Rev. Lett.111 087001
[12]
Zhu J, Zhang J L, Kong P P, Zhang S J, Yu X H, Zhu J L, Liu Q Q, Li X, Yu R C, Ahuja R, Yang W G, Shen G Y, Mao H K, Weng H M, Dai X, Fang Z, Zhao Y S and Jin C Q 2013 Sci. Rep.3 2016
[13]
Kong P P, Sun F, Xing L Y, Zhu J, Zhang S J, Li W M, Liu Q Q, Wang X C, Feng S M, Yu X H, Zhu J L, Yu R C, Yang W G, Shen G Y, Zhao Y S, Ahuja R, Mao H K and Jin C Q 2014 Sci. Rep.4 6679
[14]
Zhang J L, Zhang S J, Kong P P, Zhu J, Li X D, Liu J, Cao L Z and Jin C Q 2013 Physica C493 75
Jin M L, Sun F, Xing L Y, Zhang S J, Feng S M, Kong P P, Li W M, Wang X C, Zhu J L, Long Y W, Bai H Y, Gu C Z, Yu R C, Yang W G, Shen G Y, Zhao Y S, Mao H K and Jin C Q 6 2017 Sci. Rep.7 39699
[17]
Liu Y, Long Y J, Zhao L X, Nie S M, Zhang S J, Weng Y X, Jin M L, Li W M, Liu Q Q, Long Y W, Yu R C, Gu C Z, Sun F, Yang W G, Mao H K, Feng X L, Li Q, Zheng W T, Weng H M, Dai X, Fang Z, Chen G F and Jin C Q 2017 Sci. Rep.7 44367
[18]
Zhang S J, Zhang J L, Yu X H, Zhu J, Kong P P, Feng S M, Liu Q Q, Yang L X, Wang X C, Cao L Z, Yang W G, Wang L, Mao H G, Zhao Y S, Liu H Z, Dai X, Fang Z, Zhang S C and Jin C Q 2012 J. Appl. Phys.111 112630
Gonze X, Amadon B, Anglade P M, Beuken J M, Bottin F, Boulanger P, Bruneval F, Caliste D, Caracas R, Côté M, Deutsch T, Genovese L, Ghosez Ph, Giantomassi M, Goedecker S, Hamann D R, Hermet P K, Jollet F and Zwanziger J W 2009 Comput. Phys. Commun.180 2582
Xing Y, Wang H, Li C K, Zhang X, Liu J, Zhang Y W, Luo J W, Wang Z Q, Wang Y, Ling L S, Tian M L, Jia S, Feng J, Liu X J, Wei J and Wang J 2016 npj Quantum Mater.1 16005