CONDENSED MATTER: ELECTRONIC STRUCTURE, ELECTRICAL, MAGNETIC, AND OPTICAL PROPERTIES |
|
|
|
|
Finite Temperature Magnetism in the Triangular Lattice Antiferromagnet KErTe$_{2}$ |
Weiwei Liu1,2†, Zheng Zhang2†*, Dayu Yan2, Jianshu Li2, Zhitao Zhang3, Jianting Ji2, Feng Jin2, Youguo Shi2, and Qingming Zhang2,4 |
1Department of Physics, Renmin University of China, Beijing 100872, China 2Beijing National Laboratory for Condensed Matter Physics, and Institute of Physics, Chinese Academy of Sciences, Beijing 100190, China 3Anhui Province Key Laboratory of Condensed Matter Physics at Extreme Conditions, High Magnetic Field Laboratory, Chinese Academy of Sciences, Hefei 230031, China 4School of Physical Science and Technology, Lanzhou University, Lanzhou 730000, China
|
|
Cite this article: |
Weiwei Liu, Zheng Zhang, Dayu Yan et al 2024 Chin. Phys. Lett. 41 097503 |
|
|
Abstract After the discovery of the ARECh$_{2}$ (A = alkali or monovalent ions, RE = rare-earth, Ch = chalcogen) triangular lattice quantum spin liquid (QSL) family, a series of its oxide, sulfide, and selenide counterparts has been consistently reported and extensively investigated. While KErTe$_{2}$ represents the initial synthesized telluride member, preserving its triangular spin lattice, it was anticipated that the substantial tellurium ions could impart more pronounced magnetic attributes and electronic structures to this material class. This study delves into the magnetism of KErTe$_{2}$ at finite temperatures through magnetization and electron spin resonance (ESR) measurements. Based on the angular momentum $\hat{J}$ after spin-orbit coupling (SOC) and symmetry analysis, we obtain the magnetic effective Hamiltonian to describe the magnetism of Er$^{3+}$ in $R\bar{3}m$ space group. Applying the mean-field approximation to the Hamiltonian, we can simulate the magnetization and magnetic heat capacity of KErTe$_{2}$ in paramagnetic state and determine the crystalline electric field (CEF) parameters and partial exchange interactions. The relatively narrow energy gaps between the CEF ground state and excited states exert a significant influence on the magnetism. For example, small CEF excitations can result in a significant broadening of the ESR linewidth at 2 K. For the fitted exchange interactions, although the values are small, given a large angular momentum $J=15/2$ after SOC, they still have a noticeable effect at finite temperatures. Notably, the heat capacity data under different magnetic fields along the $c$ axis direction also roughly match our calculated results, further validating the reliability of our analytical approach. These derived parameters serve as crucial tools for future investigations into the ground state magnetism of KErTe$_{2}$. The findings presented herein lay a foundation for exploration of the intricate magnetism within the triangular-lattice delafossite family.
|
|
Received: 11 June 2024
Published: 19 September 2024
|
|
PACS: |
75.10.Kt
|
(Quantum spin liquids, valence bond phases and related phenomena)
|
|
75.30.Et
|
(Exchange and superexchange interactions)
|
|
75.30.Gw
|
(Magnetic anisotropy)
|
|
|
|
|
[1] | Anderson P W 1973 Mater. Res. Bull. 8 153 |
[2] | Anderson P W 1987 Science 235 1196 |
[3] | Liu W W, Zhang Z, Ji J T, Liu Y X, Li J S, Wang X Q, Lei H C, Chen G, and Zhang Q M 2018 Chin. Phys. Lett. 35 117501 |
[4] | Bordelon M M, Kenney E, Liu C X, Hogan T, Posthuma L, Kavand M, Lyu Y Q, Sherwin M, Butch N P, Brown C, Graf M J, Balents L, and Wilson S D 2019 Nat. Phys. 15 1058 |
[5] | Ding L, Manuel P, Bachus S, Grußler F, Gegenwart P, Singleton J, Johnson R D, Walker H C, Adroja D T, Hillier A D, and Tsirlin A A 2019 Phys. Rev. B 100 144432 |
[6] | Ranjith K M, Dmytriieva D, Khim S, Sichelschmidt J, Luther S, Ehlers D, Yasuoka H, Wosnitza J, Tsirlin A A, Kühne H, and Baenitz M 2019 Phys. Rev. B 99 180401 |
[7] | Baenitz M, Schlender P, Sichelschmidt J, Onykiienko Y A, Zangeneh Z, Ranjith K M, Sarkar R, Hozoi L, Walker H C, Orain J C, Yasuoka H, van den Brink J, Klauss H H, Inosov D S, and Doert T 2018 Phys. Rev. B 98 220409 |
[8] | Sarkar R, Schlender P, Grinenko V, Haeussler E, Baker P J, Doert T, and Klauss H H 2019 Phys. Rev. B 100 241116 |
[9] | Zhang Z, Ma X L, Li J S, Wang G H, Adroja D T, Perring T P, Liu W W, Jin F, Ji J T, Wang Y M, Kamiya Y, Wang X Q, Ma J, and Zhang Q M 2021 Phys. Rev. B 103 035144 |
[10] | Ranjith K M, Luther S, Reimann T, Schmidt B, Schlender P, Sichelschmidt J, Yasuoka H, Strydom A M, Skourski Y, Wosnitza J, Kühne H, Doert T, and Baenitz M 2019 Phys. Rev. B 100 224417 |
[11] | Helton J S, Matan K, Shores M P, Nytko E A, Bartlett B M, Yoshida Y, Takano Y, Suslov A, Qiu Y, Chung J H, Nocera D G, and Lee Y S 2007 Phys. Rev. Lett. 98 107204 |
[12] | Itou T, Oyamada A, Maegawa S, Tamura M, and Kato R 2008 Phys. Rev. B 77 104413 |
[13] | Li Y S, Liao H J, Zhang Z, Li S Y, Jin F, Ling L S, Zhang L, Zou Y M, Pi L, Yang Z R, Wang J F, Wu Z H, and Zhang Q M 2015 Sci. Rep. 5 16419 |
[14] | Li Y S, Chen G, Tong W, Pi L, Liu J J, Yang Z R, Wang X Q, and Zhang Q M 2015 Phys. Rev. Lett. 115 167203 |
[15] | Li Y S, Adroja D, Biswas P K, Baker P J, Zhang Q, Liu J J, Tsirlin A A, Gegenwart P, and Zhang Q M 2016 Phys. Rev. Lett. 117 097201 |
[16] | Xu Y, Zhang J, Li Y S, Yu Y J, Hong X C, Zhang Q M, and Li S Y 2016 Phys. Rev. Lett. 117 267202 |
[17] | Shen Y, Li Y D, Wo H L, Li Y S, Shen S D, Pan B Y, Wang Q S, Walker H C, Steffens P, Boehm M, Hao Y Q, Quintero-Castro D L, Harriger L W, Frontzek M D, Hao L J, Meng S Q, Zhang Q M, Chen G, and Zhao J 2016 Nature 540 559 |
[18] | Paddison J A M, Daum M, Dun Z L, Ehlers G, Liu Y H, Stone Matthew?B, Zhou H D, and Mourigal M 2017 Nat. Phys. 13 117 |
[19] | Xing J, Sanjeewa L D, Kim J, Meier W R, May A F, Zheng Q, Custelcean R, Stewart G R, and Sefat A S 2019 Phys. Rev. Mater. 3 114413 |
[20] | Scheie A, Garlea V O, Sanjeewa L D, Xing J, and Sefat A S 2020 Phys. Rev. B 101 144432 |
[21] | Zhang Z, Li J S, Liu W W, Zhang Z T, Ji J T, Jin F, Chen R, Wang J F, Wang X Q, Ma J, and Zhang Q M 2021 Phys. Rev. B 103 184419 |
[22] | Liu W W, Yan D Y, Zhang Z, Ji J T, Shi Y G, Jin F, and Zhang Q M 2021 Chin. Phys. B 30 107504 |
[23] | Zhang Z, Yin Y Y, Ma X L, Liu W W, Li J S, Jin F, Ji J T, Wang Y M, Wang X Q, Yu X H, and Zhang Q M 2020 arXiv:2003.11479 [cond-mat.supr-con] |
[24] | Jia Y T, Gong C S, Liu Y X, Zhao J F, Dong C, Dai G Y, Li X D, Lei H C, Yu R Z, Zhang G M, and Jin C Q 2020 Chin. Phys. Lett. 37 097404 |
[25] | Supplementary Information |
[26] | Li Y D, Wang X Q, and Chen G 2016 Phys. Rev. B 94 035107 |
[27] | Schmidt B, Sichelschmidt J, Ranjith K M, Doert T, and Baenitz M 2021 Phys. Rev. B 103 214445 |
[28] | Li Y S, Adroja D, Bewley R I, Voneshen D, Tsirlin A A, Gegenwart P, and Zhang Q M 2017 Phys. Rev. Lett. 118 107202 |
[29] | Sichelschmidt J, Schlender P, Schmidt B, Baenitz M, and Doert T 2019 J. Phys.: Condens. Matter 31 205601 |
[30] | Sichelschmidt J, Schmidt B, Schlender P, Khim S, Doert T, and Baenitz M 2020 JPS Conf. Proc. 30 011096 |
|
|
Viewed |
|
|
|
Full text
|
|
|
|
|
Abstract
|
|
|
|
|