Chin. Phys. Lett.  2024, Vol. 41 Issue (9): 096101    DOI: 10.1088/0256-307X/41/9/096101
CONDENSED MATTER: STRUCTURE, MECHANICAL AND THERMAL PROPERTIES |
Prospect of Hexagonal CsMg(I$_{1-x}$Br$_{x}$)$_{3}$ Alloys for Deep-Ultraviolet Light Emission
Siyuan Xu1, Zheng Liu2, Xun Xu2, Su-Huai Wei2, Yuzheng Guo1*, and Xie Zhang3*
1School of Electrical Engineering and Automation, Wuhan University, Wuhan 430072, China
2Beijing Computational Science Research Center, Beijing 100193, China
3School of Materials Science and Engineering, Northwestern Polytechnical University, Xi'an 710072, China
Cite this article:   
Siyuan Xu, Zheng Liu, Xun Xu et al  2024 Chin. Phys. Lett. 41 096101
Download: PDF(9379KB)   PDF(mobile)(9287KB)   HTML
Export: BibTeX | EndNote | Reference Manager | ProCite | RefWorks
Abstract Materials for deep-ultraviolet (DUV) light emission are extremely rare, significantly limiting the development of efficient DUV light-emitting diodes. Here we report CsMg(I$_{1-x}$Br$_{x}$)$_{3}$ alloys as potential DUV light emitters. Based on rigorous first-principles hybrid functional calculations, we find that CsMgI$_{3}$ has an indirect bandgap, while CsMgBr$_{3}$ has a direct bandgap. Further, we employ a band unfolding technique for alloy supercell calculations to investigate the critical Br concentration in CsMg(I$_{1-x}$Br$_{x}$)$_{3}$ associated with the crossover from an indirect to a direct bandgap, which is found to be $\sim$ 0.36. Thus, CsMg(I$_{1-x}$Br$_{x})_{3}$ alloys with $0.36\leqslant x\leqslant 1$ cover a wide range of direct bandgap (4.38–5.37 eV; 284–231 nm), falling well into the DUV regime. Our study will guide the development of efficient DUV light emitters.
Received: 06 June 2024      Published: 24 September 2024
PACS:  61.82.Fk (Semiconductors)  
  61.66.Dk (Alloys )  
  71.15.Mb (Density functional theory, local density approximation, gradient and other corrections)  
  95.85.Mt (Ultraviolet (10-300 nm))  
TRENDMD:   
URL:  
https://cpl.iphy.ac.cn/10.1088/0256-307X/41/9/096101       OR      https://cpl.iphy.ac.cn/Y2024/V41/I9/096101
Service
E-mail this article
E-mail Alert
RSS
Articles by authors
Siyuan Xu
Zheng Liu
Xun Xu
Su-Huai Wei
Yuzheng Guo
and Xie Zhang
[1] Hirayama H, Maeda N, Fujikawa S, Toyoda S, and Kamata N 2014 Jpn. J. Appl. Phys. 53 100209
[2] Kneissl M, Seong T Y, Han J, and Amano H 2019 Nat. Photonics 13 233
[3] Shur M S and Gaska R 2010 IEEE Trans. Electron Devices 57 12
[4] Wang G S, Lu H, Xie F, Chen D J, Ren F F, Zhang R, and Zheng Y D 2012 Chin. Phys. Lett. 29 097302
[5] Yu H P, Li S B, Zhang P, Wu S H, Wei X B, Wu Z M, and Chen Z 2014 Chin. Phys. Lett. 31 108502
[6] Xu X, Liang H P, Huang Q S, Liu Z, Zhao B Q, Xu S Y, Li C N, Zhou Z K, Li J, Wei S H, and Zhang X 2024 J. Am. Chem. Soc. 146 12864
[7] Liu B T, Ma P, Li X L, Wang J X, and Li J M 2017 Chin. Phys. Lett. 34 058101
[8] Hsu T C, Teng Y T, Yeh Y W, Fan X, Chu K H, Lin S H, Yeh K K, Lee P T, Lin Y, Chen Z, Wu T, and Kuo H C 2021 Photonics 8 196
[9] Chang C E and Wilcox W R 1974 J. Cryst. Growth 21 135
[10] Nicoarǎ D and Nicoarǎ I 1988 Mater. Sci. Eng. A 102 L1
[11] Yang C C and Tan C S 2023 J. Phys. Chem. C 127 16110
[12] McPherson G L, Gharavi A, and Meyerson S L 1992 Chem. Phys. 165 361
[13] Suta M, Lavoie-Cardinal F, Olchowka J, and Wickleder C 2018 Phys. Rev. Appl. 9 064024
[14] Muscat J, Wander A, and Harrison N M 2001 Chem. Phys. Lett. 342 397
[15] Kresse G and Furthmüller J 1996 Comput. Mater. Sci. 6 15
[16] Kresse G and Furthmüller J 1996 Phys. Rev. B 54 11169
[17] Blöchl P E 1994 Phys. Rev. B 50 17953
[18] McPherson G L, Kistenmacher T J, and Stucky G D 1970 J. Chem. Phys. 52 815
[19] McPherson G L, McPherson A M, and Atwood J L 1980 J. Phys. Chem. Solids 41 495
[20] Wei S H, Ferreira L G, Bernard J E, and Zunger A 1990 Phys. Rev. B 42 9622
[21] Zunger A, Wei S H, Ferreira L G, and Bernard J E 1990 Phys. Rev. Lett. 65 353
[22] Popescu V and Zunger A 2010 Phys. Rev. Lett. 104 236403
[23] Popescu V and Zunger A 2012 Phys. Rev. B 85 085201
[24] Shen J X, Wickramaratne D, and Van de Walle C G 2017 Phys. Rev. Mater. 1 065001
[25] Turiansky M E, Shen J X, Wickramaratne D, and Van de Walle C G 2019 J. Appl. Phys. 126 095706
Related articles from Frontiers Journals
[1] Xiege Huang, Jialiang Li, Haoqin Ma, Changlong Li, Tianle Liu, Bo Duan, Pengcheng Zhai, and Guodong Li. Valence Bands Convergence in p-Type CoSb$_{3}$ through Electronegative Fluorine Filling[J]. Chin. Phys. Lett., 2024, 41(7): 096101
[2] Bowen Zheng, Tao Chen, Hairui Sun, Manman Yang, Bingchao Yang, Xin Chen, Yongsheng Zhang, and Xiaobing Liu. Influence of High-Pressure Induced Lattice Dislocations and Distortions on Thermoelectric Performance of Pristine SnTe[J]. Chin. Phys. Lett., 2024, 41(5): 096101
[3] Shi-Wei Ye, Song-Yuan Geng, Han-Pu Liang, Xie Zhang, and Su-Huai Wei. Origin of the Disparity between the Stability of Transmutated Mix-Cation and Mix-Anion Compounds[J]. Chin. Phys. Lett., 2024, 41(5): 096101
[4] Xie Zhang, Jun Kang, and Su-Huai Wei. Profiling Electronic and Phononic Band Structures of Semiconductors at Finite Temperatures: Methods and Applications[J]. Chin. Phys. Lett., 2024, 41(2): 096101
[5] Wenkai Zhu, Shihong Xie, Hailong Lin, Gaojie Zhang, Hao Wu, Tiangui Hu, Ziao Wang, Xiaomin Zhang, Jiahan Xu, Yujing Wang, Yuanhui Zheng, Faguang Yan, Jing Zhang, Lixia Zhao, Amalia Patanè, Jia Zhang, Haixin Chang, and Kaiyou Wang. Large Room-Temperature Magnetoresistance in van der Waals Ferromagnet/Semiconductor Junctions[J]. Chin. Phys. Lett., 2022, 39(12): 096101
[6] Yanling Zhang , Xiaozhu Hao , Yanping Huang , Fubo Tian, Da Li , Youchun Wang , Hao Song , and Defang Duan . Structural and Electrical Properties of Be$_{x}$Zn$_{1-x}$O Alloys under High Pressure[J]. Chin. Phys. Lett., 2021, 38(2): 096101
[7] Qing Liao, Long Kang, Tong-Min Zhang, Hui-Ping Liu, Tao Wang, Xiao-Gang Li, Jin-Yu Li, Zhen Yang, and Bing-Sheng Li. Comparison of Cavities Formed in Single Crystalline and Polycrystalline $\alpha$-SiC after H Implantation[J]. Chin. Phys. Lett., 2020, 37(7): 096101
[8] Hui-Ping Liu, Jin-Yu Li, Bing-Sheng Li. Microstructure of Hydrogen-Implanted Polycrystalline $\alpha$-SiC after Annealing[J]. Chin. Phys. Lett., 2018, 35(9): 096101
[9] Li-Hua Dai, Da-Wei Bi, Zheng-Xuan Zhang, Xin Xie, Zhi-Yuan Hu, Hui-Xiang Huang, Shi-Chang Zou. Metastable Electron Traps in Modified Silicon-on-Insulator Wafer[J]. Chin. Phys. Lett., 2018, 35(5): 096101
[10] Rui Wu, Jun-Ling Wang, Gang Yan, Rong Wang. Photoluminescence Analysis of Electron Damage for Minority Carrier Diffusion Length in GaInP/GaAs/Ge Triple-Junction Solar Cells[J]. Chin. Phys. Lett., 2018, 35(4): 096101
[11] Yu-Zhu Liu, Bing-Sheng Li, Hua Lin, Li Zhang. Recrystallization Phase in He-Implanted 6H-SiC[J]. Chin. Phys. Lett., 2017, 34(7): 096101
[12] Jun-Ling Wang, Tian-Cheng Yi, Yong Zheng, Rui Wu, Rong Wang. Temperature-Dependent Photoluminescence Analysis of 1.0MeV Electron Irradiation-Induced Nonradiative Recombination Centers in n$^{+}$–p GaAs Middle Cell of GaInP/GaAs/Ge Triple-Junction Solar Cells[J]. Chin. Phys. Lett., 2017, 34(7): 096101
[13] Yu-Zhu Liu, Bing-Sheng Li, Li Zhang. High-Temperature Annealing Induced He Bubble Evolution in Low Energy He Ion Implanted 6H-SiC[J]. Chin. Phys. Lett., 2017, 34(5): 096101
[14] Yong Zheng, Tian-Cheng Yi, Jun-Ling Wang, Peng-Fei Xiao, Rong Wang. Radiation Damage Analysis of Individual Subcells for GaInP/GaAs/Ge Solar Cells Using Photoluminescence Measurements[J]. Chin. Phys. Lett., 2017, 34(2): 096101
[15] Yi Han, Bing-Sheng Li, Zhi-Guang Wang, Jin-Xin Peng, Jian-Rong Sun, Kong-Fang Wei, Cun-Feng Yao, Ning Gao, Xing Gao, Li-Long Pang, Ya-Bin Zhu, Tie-Long Shen, Hai-Long Chang, Ming-Huan Cui, Peng Luo, Yan-Bin Sheng, Hong-Peng Zhang, Xue-Song Fang, Si-Xiang Zhao, Jin Jin, Yu-Xuan Huang, Chao Liu, Dong Wang, Wen-Hao He, Tian-Yu Deng, Peng-Fei Tai, Zhi-Wei Ma. H-ion Irradiation-induced Annealing in He-ion Implanted 4H-SiC[J]. Chin. Phys. Lett., 2017, 34(1): 096101
Viewed
Full text


Abstract