Chin. Phys. Lett.  2024, Vol. 41 Issue (9): 097101    DOI: 10.1088/0256-307X/41/9/097101
CONDENSED MATTER: ELECTRONIC STRUCTURE, ELECTRICAL, MAGNETIC, AND OPTICAL PROPERTIES |
Excitonic Instability in Ta$_2$Pd$_3$Te$_5$ Monolayer
Jingyu Yao1,2†, Haohao Sheng1,2†, Ruihan Zhang1,2, Rongtian Pang3, Jin-Jian Zhou3*, Quansheng Wu1,2, Hongming Weng1,2, Xi Dai4, Zhong Fang1,2, and Zhijun Wang1,2*
1Beijing National Laboratory for Condensed Matter Physics, and Institute of Physics, Chinese Academy of Sciences, Beijing 100190, China
2University of Chinese Academy of Sciences, Beijing 100049, China
3Centre for Quantum Physics, Key Laboratory of Advanced Optoelectronic Quantum Architecture and Measurement (MOE), School of Physics, Beijing Institute of Technology, Beijing 100081, China
4Department of Physics, Hong Kong University of Science and Technology, Hong Kong 999077, China
Cite this article:   
Jingyu Yao, Haohao Sheng, Ruihan Zhang et al  2024 Chin. Phys. Lett. 41 097101
Download: PDF(1497KB)   PDF(mobile)(1518KB)   HTML
Export: BibTeX | EndNote | Reference Manager | ProCite | RefWorks
Abstract By systematic theoretical calculations, we reveal an excitonic insulator (EI) in the Ta$_2$Pd$_3$Te$_5$ monolayer. The bulk Ta$_2$Pd$_3$Te$_5$ is a van der Waals (vdW) layered compound, whereas the vdW layer can be obtained through exfoliation or molecular-beam epitaxy. First-principles calculations show that the monolayer is a nearly zero-gap semiconductor with the modified Becke–Johnson functional. Due to the same symmetry of the band-edge states, the two-dimensional polarization $\alpha_{\rm 2D}$ would be finite as the band gap goes to zero, allowing for an EI state in the compound. Using the first-principles many-body perturbation theory, the $GW$ plus Bethe–Salpeter equation calculation reveals that the exciton binding energy is larger than the single-particle band gap, indicating the excitonic instability. The computed phonon spectrum suggests that the monolayer is dynamically stable without lattice distortion. Our findings suggest that the Ta$_2$Pd$_3$Te$_5$ monolayer is an excitonic insulator without structural distortion.
Received: 03 June 2024      Published: 02 September 2024
PACS:  71.35.--y  
  71.15.Mb (Density functional theory, local density approximation, gradient and other corrections)  
  73.90.+f (Other topics in electronic structure and electrical properties of surfaces, interfaces, thin films, and low-dimensional structures)  
TRENDMD:   
URL:  
https://cpl.iphy.ac.cn/10.1088/0256-307X/41/9/097101       OR      https://cpl.iphy.ac.cn/Y2024/V41/I9/097101
Service
E-mail this article
E-mail Alert
RSS
Articles by authors
Jingyu Yao
Haohao Sheng
Ruihan Zhang
Rongtian Pang
Jin-Jian Zhou
Quansheng Wu
Hongming Weng
Xi Dai
Zhong Fang
and Zhijun Wang
[1] Jérome D, Rice T M, and Kohn W 1967 Phys. Rev. 158 462
[2] Shim Y P and MacDonald A H 2009 Phys. Rev. B 79 235329
[3] Du L, Li X, Lou W, Sullivan G, Chang K, Kono J, and Du R R 2017 Nat. Commun. 8 1971
[4] Sun B, Zhao W, Palomaki T, Fei Z, Runburg E, Malinowski P, Huang X, Cenker J, Cui Y T, Chu J H, Xu X, Ataei S S, Varsano D, Palummo M, Molinari E, Rontani M, and Cobden D H 2022 Nat. Phys. 18 94
[5] Jia Y, Wang P, Chiu C L, Song Z, Yu G, Jäck B, Lei S, Klemenz S, Cevallos F A, Onyszczak M, Fishchenko N, Liu X, Farahi G, Xie F, Xu Y, Watanabe K, Taniguchi T, Bernevig B A, Cava R J, Schoop L M, Yazdani A, and Wu S 2022 Nat. Phys. 18 87
[6] Kong L, Shindou R, and Zhang Y 2022 Phys. Rev. B 106 235145
[7] Gao Q, Chan Y H, Wang Y, Zhang H, Jinxu P, Cui S, Yang Y, Liu Z, Shen D, Sun Z, Jiang J, Chiang T C, and Chen P 2023 Nat. Commun. 14 994
[8] Song Y, Jia C, Xiong H, Wang B, Jiang Z, Huang K, Hwang J, Li Z, Hwang C, Liu Z, Shen D, Sobota J A, Kirchmann P, Xue J, Devereaux T P, Mo S K, Shen Z X, and Tang S 2023 Nat. Commun. 14 1116
[9] Wang R, Sedrakyan T A, Wang B, Du L, and Du R R 2023 Nature 619 57
[10] Pikulin D I and Hyart T 2014 Phys. Rev. Lett. 112 176403
[11] Ma J, Nie S, Gui X, Naamneh M, Jandke J, Xi C, Zhang J, Shang T, Xiong Y, Kapon I, Kumar N, Soh Y, Gosálbez-Martínez D, Yazyev O V, Fan W, Hübener H, Giovannini U D, Plumb N C, Radovic M, Sentef M A, Xie W, Wang Z, Mudry C, Müller M, and Shi M 2022 Nat. Mater. 21 423
[12] Shao Y and Dai X 2024 Phys. Rev. X 14 021047
[13] Rohlfing M, Krüger P, and Pollmann J 1993 Phys. Rev. B 48 17791
[14] Cercellier H, Monney C, Clerc F, Battaglia C, Despont L, Garnier M G, Beck H, Aebi P, Patthey L, Berger H, and Forró L 2007 Phys. Rev. Lett. 99 146403
[15] Monney C, Cercellier H, Clerc F, Battaglia C, Schwier E F, Didiot C, Garnier M G, Beck H, Aebi P, Berger H, Forró L, and Patthey L 2009 Phys. Rev. B 79 045116
[16] Wakisaka Y, Sudayama T, Takubo K, Mizokawa T, Arita M, Namatame H, Taniguchi M, Katayama N, Nohara M, and Takagi H 2009 Phys. Rev. Lett. 103 026402
[17] Wakisaka Y, Sudayama T, Takubo K, Mizokawa T, Saini N L, Arita M, Namatame H, Taniguchi M, Katayama N, Nohara M, and Takagi H 2012 J. Supercond. Novel Magn. 25 1231
[18] Mazza G, Rösner M, Windgätter L, Latini S, Hübener H, Millis A J, Rubio A, and Georges A 2020 Phys. Rev. Lett. 124 197601
[19] Kogar A, Rak M S, Vig S, Husain A A, Flicker F, Joe Y I, Venema L, MacDougall G J, Chiang T C, Fradkin E, van Wezel J, and Abbamonte P 2017 Science 358 1314
[20] Lin Z, Wang C, Balassis A, Echeverry J P, Vasenko A S, Silkin V M, Chulkov E V, Shi Y, Zhang J, Guo J, and Zhu X 2022 Phys. Rev. Lett. 129 187601
[21] Wang Z, Rhodes D A, Watanabe K, Taniguchi T, Hone J C, Shan J, and Mak K F 2019 Nature 574 76
[22] Troue M, Figueiredo J, Sigl L, Paspalides C, Katzer M, Taniguchi T, Watanabe K, Selig M, Knorr A, Wurstbauer U, and Holleitner A W 2023 Phys. Rev. Lett. 131 036902
[23] Jiang Z, Liu Z, Li Y, and Duan W 2017 Phys. Rev. Lett. 118 266401
[24] Jiang Z, Li Y, Zhang S, and Duan W 2018 Phys. Rev. B 98 081408
[25] Jiang Z, Li Y, Duan W, and Zhang S 2019 Phys. Rev. Lett. 122 236402
[26] Jiang Z, Lou W, Liu Y, Li Y, Song H, Chang K, Duan W, and Zhang S 2020 Phys. Rev. Lett. 124 166401
[27] Yang H, Zeng J, Shao Y, Xu Y, Dai X, and Li X Z 2024 Phys. Rev. B 109 075167
[28] Dong S and Li Y 2021 Phys. Rev. B 104 085133
[29] Dong S and Li Y 2023 Phys. Rev. B 107 235147
[30] Blöchl P E 1994 Phys. Rev. B 50 17953
[31] Kresse G and Joubert D 1999 Phys. Rev. B 59 1758
[32] Kresse G and Furthmüller J 1996 Comput. Mater. Sci. 6 15
[33] Kresse G and Furthmüller J 1996 Phys. Rev. B 54 11169
[34] Togo A and Tanaka I 2015 Scr. Mater. 108 1
[35] Perdew J P, Burke K, and Ernzerhof M 1996 Phys. Rev. Lett. 77 3865
[36] Tran F and Blaha P 2009 Phys. Rev. Lett. 102 226401
[37] Becke A D and Johnson E R 2006 J. Chem. Phys. 124 221101
[38] Yamada T and Hirata S 2015 J. Chem. Phys. 143 114112
[39] Marini A, Hogan C, Grüning M, and Varsano D 2009 Comput. Phys. Commun. 180 1392
[40] Giannozzi P, Baroni S, Bonini N, Calandra M, Car R, Cavazzoni C, Ceresoli D, Chiarotti G L, Cococcioni M, Dabo I, Dal Corso A, de Gironcoli S, Fabris S, Fratesi G, Gebauer R, Gerstmann U, Gougoussis C, Kokalj A, Lazzeri M, Martin-Samos L, Marzari N, Mauri F, Mazzarello R, Paolini S, Pasquarello A, Paulatto L, Sbraccia C, Scandolo S, Sclauzero G, Seitsonen A P, Smogunov A, Umari P, and Wentzcovitch R M 2009 J. Phys.: Condens. Matter 21 395502
[41] Rozzi C A, Varsano D, Marini A, Gross E K U, and Rubio A 2006 Phys. Rev. B 73 205119
[42] Bruneval F and Gonze X 2008 Phys. Rev. B 78 085125
[43] Guo Z, Yan D, Sheng H, Nie S, Shi Y, and Wang Z 2021 Phys. Rev. B 103 115145
[44] Gao J, Wu Q, Persson C, and Wang Z 2021 Comput. Phys. Commun. 261 107760
[45] Zhang R, Deng J, Sun Y, Fang Z, Guo Z, and Wang Z 2023 Phys. Rev. Res. 5 023142
[46] Guo Z, Deng J, Xie Y, and Wang Z 2022 npj Quantum Mater. 7 87
[47] Zhang S, Sheng H, Song Z D, Liang C, Jiang Y, Sun S, Wu Q, Weng H, Fang Z, Dai X, and Wang Z 2023 Chin. Phys. Lett. 40 127101
[48] Calandra M and Mauri F 2011 Phys. Rev. Lett. 106 196406
[49] Bianco R, Calandra M, and Mauri F 2015 Phys. Rev. B 92 094107
[50] Di Salvo F J, Chen C H, Fleming R M, Waszczak J V, Dunn R G, Sunshine S A, and Ibers J A 1986 J. Less-Common Met. 116 51
[51] Nakano A, Hasegawa T, Tamura S, Katayama N, Tsutsui S, and Sawa H 2018 Phys. Rev. B 98 045139
[52] Kim S Y, Kim Y, Kang C J, An E S, Kim H K, Eom M J, Lee M, Park C, Kim T H, Choi H C, Min B I, and Kim J S 2016 ACS Nano 10 8888
[53] Pizzi G, Vitale V, Arita R, Blügel S, Freimuth F, Géranton G, Gibertini M, Gresch D, Johnson C, Koretsune T, Ibañez-Azpiroz J, Lee H, Lihm J M, Marchand D, Marrazzo A, Mokrousov Y, Mustafa J I, Nohara Y, Nomura Y, Paulatto L, Poncé S, Ponweiser T, Qiao J, Thöle F, Tsirkin S S, Wierzbowska M, Marzari N, Vanderbilt D, Souza I, Mostofi A A, and Yates J R 2020 J. Phys.: Condens. Matter 32 165902
[54] Rohlfing M and Louie S G 2000 Phys. Rev. B 62 4927
[55] Scharf B, Xu G, Matos-Abiague A, and Žutić I 2017 Phys. Rev. Lett. 119 127403
[56] Quintela M F C M, Henriques J C G, Tenório L G M, and Peres N M R 2022 Phys. Status Solidi 259 2200097
[57] Cudazzo P, Tokatly I V, and Rubio A 2011 Phys. Rev. B 84 085406
[58] Yang H, Wang X, and Li X Z 2022 New J. Phys. 24 083010
[59] Higashihara N, Okamoto Y, Yoshikawa Y, Yamakawa Y, Takatsu H, Kageyama H, and Takenaka K 2021 J. Phys. Soc. Jpn. 90 063705
[60] Huang J, Jiang B, Yao J, Yan D, Lei X, Gao J, Guo Z, Jin F, Li Y, Yuan Z, Chai C, Sheng H, Pan M, Chen F, Liu J, Gao S, Qu G, Liu B, Jiang Z, Liu Z, Ma X, Zhou S, Huang Y, Yun C, Zhang Q, Li S, Jin S, Ding H, Shen J, Su D, Shi Y, Wang Z, and Qian T 2024 Phys. Rev. X 14 011046
[61] Zhang P, Dong Y Y, Yan D Y, Jiang B, Yang T, Li J, Guo Z P, Huang Y, Haobo Q, Li Y P, Li K, Kurokawa R, Wang Y F, Nie M, Hashimoto D, Lu W H, Jiao J, Shen T, Qian Z J, Wang Y G, Shi T, and Kondo T 2024 Phys. Rev. X 14 011047
[62] Hossain M S, Cochran T A, Jiang Y X, Zhang S B, Wu H Y, Liu X X, Zheng X Q, Kim B, Cheng G M, Zhang Q, Litskevich M, Zhang J Y, Cheng Z J, Liu J J, Yin J X, Yang X P, Denlinger J, Tallarida M, Dai J, Vescovo E, Rajapitamahuni A, Miao H, Yao N, Peng Y Y, Yao Y G, Wang Z W, Balicas L, Neupert T, and Hasan M Z 2023 arXiv:2312.15862 [cond-mat.str-el]
Viewed
Full text


Abstract