CROSS-DISCIPLINARY PHYSICS AND RELATED AREAS OF SCIENCE AND TECHNOLOGY |
|
|
|
|
Long-Cycle Lithium Batteries with LiNi$_{0.8}$Co$_{0.1}$Mn$_{0.1}$O$_{2}$ Cathodes above 4.5 V Enabled by Uniform Coating of Nanosized Garnet Electrolytes |
Jianqun Wang, Ning Zhao*, and Xiangxin Guo* |
College of Physics, Qingdao University, Qingdao 266071, China |
|
Cite this article: |
Jianqun Wang, Ning Zhao, and Xiangxin Guo 2024 Chin. Phys. Lett. 41 078201 |
|
|
Abstract The pursuit of high-energy cathode materials has been focused on raising the charging cutoff voltage of nickel (Ni)-rich layered oxide cathode such as LiNi$_{0.8}$Co$_{0.1}$Mn$_{0.1}$O$_{2}$ (NCM811). However, the NCM811 suffers from rapid capacity fading upon cycling at cutoff voltage higher than 4.5 V, owing to their structural degradation and labile surface reactivity. Surface-coating with solid electrolytes has been recognized as an effective method to mitigate the performance failure of NCM811 at high voltage. Herein, the nano-sized Li$_{6.4}$La$_{3}$Ta$_{0.6}$Zr$_{1.4}$O$_{12}$ (LLZTO) is uniformly coated on the surface of single-crystal NCM811 particles, accompanied with the long-range Ta$^{5+}$ diffusion into the transition metal layer of NCM811 lattice. It is revealed that the LLZTO coating can not only inhibit the surface reactions of NCM811 with liquid electrolytes but also play an important role in suppressing the bulk microcracking within the NCM811 particles. The incorporation of Ta$^{5+}$ ion expands the lattice spacing and thereby improves the homogeneity of the Li$^{+}$ diffusion in the single-crystal NCM811, which alleviates the mechanical strain and intragranular cracks caused by nonuniform phases-transformation at high charging voltage. The synergy of surface protection and structural stabilization realized by LLZTO coating enables the NCM811-based lithium batteries to achieve a remarkable electrochemical performance. Typically, LLZTO coated NCM811 delivers a high reversible specific capacity of 202.1 mAh$\cdot$g$^{-1}$ with an excellent capacity retention as high as 70% over 1000 cycles upon charging to 4.5 V at 1 C.
|
|
Received: 15 April 2024
Published: 08 July 2024
|
|
|
|
|
|
[1] | Thackeray M M and Amine K 2021 Nat. Energy 6 933 |
[2] | Dai X L, Zhang Z X, Jin Y Z, Niu Y, Cao H J, Liang X Y, Chen L W, Wang J P, and Peng X G 2014 Nature 515 96 |
[3] | Yoon M, Dong Y, Hwang J, Sung J, Cha H, Ahn K, Huang Y, Kang S J, Li J, and Cho J 2021 Nat. Energy 6 362 |
[4] | Bi Y J, Tao J H, Wu Y Q, Li L Z, Xu Y B, Hu E Y, Wu B B, Hu J T, Wang C M, Zhang J G, Qi Y, and Xiao J 2020 Science 370 1313 |
[5] | Zeng H B and Huang F Q 2022 J. Inorg. Mater. 37 113 |
[6] | Ryu H H, Park K J, Yoon C S, and Sun Y K 2018 Chem. Mater. 30 1155 |
[7] | Zhou Y, Yuan C, Wang S J, Zhu Y J, Cheng S, Yang X, Yang Y, Hu J, He J L, and Li Q 2020 Energy Storage Mater. 28 255 |
[8] | Li W, Wu S, Zhang H, Zhang X, Zhuang J, Hu C, Liu Y, Lei B, Ma L, and Wang X 2018 Adv. Funct. Mater. 28 1804004 |
[9] | Yu H, Cao Y, Chen L, Hu Y, Duan X, Dai S, Li C, and Jiang H 2021 Nat. Commun. 12 4564 |
[10] | Kim U H, Park G T, Son B K, Nam G W, Liu J, Kuo L Y, Kaghazchi P, Yoon C S, and Sun Y K 2020 Nat. Energy 5 860 |
[11] | Meng X H, Zhang X D, Sheng H, Fan M, Lin T, Xiao D, Tian J, Wen R, Liu W Z, Shi J L, Wan L J, and Guo Y G 2023 Angew. Chem. Int. Ed. 62 e202302170 |
[12] | Bai X T, Ban L Q, and Zhuang W D 2020 J. Inorg. Mater. 35 972 |
[13] | Xu C L, Xiang W, Wu Z G, Qiu L, Ming Y, Yang W, Yue L C, Zhang J, Zhong B H, Guo X D, Wang G K, and Liu Y X 2021 Chem. Eng. J. 403 126314 |
[14] | Zhang H Z, Li F, Pan G L, Li G R, and Gao X P 2015 J. Electrochem. Soc. 162 A1899 |
[15] | Gan Y P, Wang Y S, Han J F, Zhang L Y, Sun W, Xia Y, Huang H, Zhang J, Liang C, and Zhang W K 2017 New J. Chem. 41 12962 |
[16] | Huang Y Y, Chen J T, Ni J F, Zhou H H, and Zhang X X 2009 J. Power Sources 188 538 |
[17] | Diao H H, Jia M Y, Zhao N, and Guo X X 2022 ACS Appl. Mater. & Interfaces 14 24929 |
[18] | Lu S Q, Zhang Q, Meng F, Liu Y N, Mao J, Guo S, Qi M Y, Xu Y S, Qiao Y, Zhang S D, Jiang K, Gu L, Xia Y, Chen S, Chen G, Cao A M, and Wan L J 2023 J. Am. Chem. Soc. 145 7397 |
[19] | Qi M Y, Zhang S D, Guo S, Ji P X, Mao J J, Wu T T, Lu S Q, Zhang X, Chen S G, Su D, Chen G H, and Cao A M 2023 Small Methods 7 2300280 |
[20] | Zhang S D, Qi M Y, Guo S, Sun Y G, Wu T T, Zhang H S, Lu S Q, Meng F, Zhang Q, Gu L, Zhao Z, Peng Z, Jin H, Ji H, Lu Y R, Chan T S, Duan R, and Cao A M 2023 Energy Storage Mater. 57 289 |
[21] | Bunyanidhi P, Phattharasupakun N, Tomon C, Duangdangchote S, Kidkhunthod P, and Sawangphruk M 2022 J. Power Sources 549 232043 |
[22] | Zhang N, Long X, Wang Z, Yu P, Han F, Fu J, Ren G, Wu Y, Zheng S, Huang W, Wang C, Li H, and Liu X 2018 ACS Appl. Energy Mater. 1 5968 |
[23] | Yu C Y, Jiao X W, Rao L, Son S B, Lee E, and Kim J H 2022 Electrochem. Commun. 138 107286 |
[24] | Park K, Yu B C, Jung J W, Li Y, Zhou W, Gao H, Son S, and Goodenough J B 2016 Chem. Mater. 28 8051 |
[25] | Bauer A, Roitzheim C, Lobe S, Sohn Y J, Sebold D, Scheld W S, Finsterbusch M, Guillon O, Fattakhova-Rohlfing D, and Uhlenbruck S 2023 Chem. Mater. 35 8958 |
[26] | Roitzheim C, Sohn Y J, Kuo L Y, Häuschen G, Mann M, Sebold D, Finsterbusch M, Kaghazchi P, Guillon O, and Fattakhova-Rohlfing D 2022 ACS Appl. Energy Mater. 5 6913 |
[27] | Yuan K, Li N, Ning R, Shen C, Hu N, Bai M, Zhang K, Tian Z, Shao L, Hu Z, Xu X, Yu T, and Xie K 2020 Nano Energy 78 105239 |
[28] | Zhou Y, Zhang H W, Wang Y L, Wan T, Guan P Y, Zhou X D, Wang X R, Chen Y C, Shi H C, Dou A C, Su M R, Guo R Q, Liu Y J, Dai L M, and Chu D W 2023 ACS Nano 17 20621 |
[29] | Shi J, Ma Z H, Han K, Wan Q, Wu D, Qu X H, and Li P 2022 J. Mater. Chem. A 10 21336 |
[30] | Heo K, Lee J, Im J, Kim M Y, Kim H S, Ahn D, Kim J, and Lim J 2020 J. Mater. Chem. A 8 22893 |
[31] | Wu L, Tang X, Chen X, Rong Z, Dang W, Wang Y, Li X, Huang L, and Zhang Y 2020 J. Power Sources 445 227337 |
[32] | Chu Y, Mu Y, Zou L, Hu Y, Cheng J, Wu B, Han M, Xi S, Zhang Q, and Zeng L 2023 Adv. Mater. 35 2212308 |
[33] | Lv Y, Cheng X, Qiang W, and Huang B 2020 J. Power Sources 450 227718 |
[34] | Xie J, Sendek A D, Cubuk E D, Zhang X K, Lu Z Y, Gong Y J, Wu T, Shi F F, Liu W, Reed E J, and Cui Y 2017 ACS Nano 11 7019 |
[35] | Zhang L, Wang S, Zhu L, He L, He S, Qin X, Zhao C, Kang F, and Li B 2022 Nano Energy 97 107119 |
[36] | Fan Q, Lin K, Yang S, Guan S, Chen J, Feng S, Liu J, Liu L, Li J, and Shi Z 2020 J. Power Sources 477 228745 |
[37] | Lu B, Ma S, and Feng H 2023 J. Alloys Compd. 961 170795 |
[38] | Wang Y, Dong N, Liu B, Qi K, Tian G, Qi S, and Wu D 2022 Chem. Eng. J. 450 137959 |
[39] | Wang W, Wu L, Li Z, Huang K, Chen Z, Lv C, Dou H, and Zhang X 2021 ChemElectroChem 8 2014 |
[40] | Zhang Z, Hong B, Yi M Y, Fan X M, Zhang Z A, Huang X B, and Lai Y Q 2022 Chem. Eng. J. 445 136825 |
[41] | Ryu H H, Namkoong B, Kim J H, Belharouak I, Yoon C S, and Sun Y K 2021 ACS Energy Lett. 6 2726 |
[42] | Xu C, Reeves P J, Jacquet Q, and Grey C P 2021 Adv. Energy Mater. 11 2003404 |
[43] | Fan X M, Ou X, Zhao W G, Liu Y, Zhang B, Zhang J F, Zou L F, Seidl L, Li Y Z, Hu G R, Battaglia C, and Yang Y 2021 Nat. Commun. 12 5320 |
[44] | Yu H F, Wang S L, Hu Y J, He G J, Bao L Q, Parkin I P, and Jiang H 2022 Green Energy Environ. 7 266 |
[45] | Tan Z L, Chen X X, Li Y J, Xi X M, Hao S P, Li X H, Shen X J, He Z J, Zhao W G, and Yang Y 2023 Adv. Funct. Mater. 33 2215123 |
[46] | Wang Z, Zhu H, Yu H, Zhang T, Hu Y, Jiang H, and Li C 2023 Chin. Chem. Lett. 34 107718 |
[47] | Liu W, Li X F, Xiong D B, Hao Y C, Li J W, Kou H R, Yan B, Li D J, Lu S G, Koo A, Adair K, and Sun X L 2018 Nano Energy 44 111 |
|
|
Viewed |
|
|
|
Full text
|
|
|
|
|
Abstract
|
|
|
|
|