Chin. Phys. Lett.  2024, Vol. 41 Issue (7): 077301    DOI: 10.1088/0256-307X/41/7/077301
CONDENSED MATTER: ELECTRONIC STRUCTURE, ELECTRICAL, MAGNETIC, AND OPTICAL PROPERTIES |
Spin Resolved Zero-Line Modes in Minimally Twisted Bilayer Graphene from Exchange Field and Gate Voltage
Sanyi You1†, Jiaqi An1†, and Zhenhua Qiao1,2*
1International Centre for Quantum Design of Functional Materials, CAS Key Laboratory of Strongly Coupled Quantum Matter Physics, and Department of Physics, University of Science and Technology of China, Hefei 230026, China
2Hefei National Laboratory, University of Science and Technology of China, Hefei 230088, China
Cite this article:   
Sanyi You, Jiaqi An, and Zhenhua Qiao 2024 Chin. Phys. Lett. 41 077301
Download: PDF(10741KB)   PDF(mobile)(10745KB)   HTML
Export: BibTeX | EndNote | Reference Manager | ProCite | RefWorks
Abstract The reliance on spin-orbit coupling or strong magnetic fields has always posed significant challenges for the mass production and even laboratory realization of most topological materials. Valley-based topological zero-line modes have attracted widespread attention due to their substantial advantage of being initially realizable with just an external electric field. However, the uncontrollable nature of electrode alignment and precise fabrication has greatly hindered the advancement in this field. By utilizing minimally twisted bilayer graphene and introducing exchange fields from magnetic substrates, we successfully realize a spin-resolved, electrode-free topological zero-line mode. Further integration of electrodes that do not require alignment considerations significantly enhances the tunability of the system's band structure. Our approach offers a promising new support for the dazzling potential of topological zero-line mode in the realm of low-energy-consumption electronics.
Received: 11 March 2024      Editors' Suggestion Published: 08 July 2024
PACS:  73.21.-b (Electron states and collective excitations in multilayers, quantum wells, mesoscopic, and nanoscale systems)  
  73.22.-f (Electronic structure of nanoscale materials and related systems)  
  73.22.Pr (Electronic structure of graphene)  
TRENDMD:   
URL:  
https://cpl.iphy.ac.cn/10.1088/0256-307X/41/7/077301       OR      https://cpl.iphy.ac.cn/Y2024/V41/I7/077301
Service
E-mail this article
E-mail Alert
RSS
Articles by authors
Sanyi You
Jiaqi An
and Zhenhua Qiao
[1] Qi X L and Zhang S C 2011 Rev. Mod. Phys. 83 1057
[2] Hasan M Z and Kane C L 2010 Rev. Mod. Phys. 82 3045
[3] Breunig O and Ando Y 2022 Nat. Rev. Phys. 4 184
[4] Tokura Y, Yasuda K, and Tsukazaki A 2019 Nat. Rev. Phys. 1 126
[5] Fu L and Kane C L 2007 Phys. Rev. B 76 045302
[6] Liu F 2023 Two-Dimensional Topological Insulators: Past, Present and Future, Coshare Science 01 video-3 1
[7] Bernevig B A, Hughes T L, and Zhang S C 2006 Science 314 1757
[8] Liu M H, Zhang J S, Chang C Z, Zhang Z C, Feng X, Li K, He K, Wang L L, Chen X, Dai X, Fang Z, Xue Q K, Ma X C, and Wang Y Y 2012 Phys. Rev. Lett. 108 036805
[9] Deng Y J, Yu Y J, Shi M Z et al. 2020 Science 367 895
[10] Chang C Z, Zhang J S, Feng X et al. 2013 Science 340 167
[11] Qiao Z H, Yang S A, Feng W X, Tse W K, Ding J, Yao Y G, Wang J, and Niu Q 2010 Phys. Rev. B 82 161414
[12] Pan H, Li Z, Liu C C, Zhu G, Qiao Z, and Yao Y 2014 Phys. Rev. Lett. 112 106802
[13] Qi S, Qiao Z, Deng X, Cubuk E D, Chen H, Zhu W, Kaxiras E, Zhang S B, Xu X, and Zhang Z 2016 Phys. Rev. Lett. 117 056804
[14] Wang Z Y, Tang C, Sachs R, Barlas Y, and Shi J 2015 Phys. Rev. Lett. 114 016603
[15] Chang C Z, Liu C X, and MacDonald A H 2023 Rev. Mod. Phys. 95 011002
[16] Xiao D, Yao W, and Niu Q 2007 Phys. Rev. Lett. 99 236809
[17] Yin J B, Tan C, Barcons-Ruiz D et al. 2022 Science 375 1398
[18] Semenoff G W, Semenoff V, and Zhou F 2008 Phys. Rev. Lett. 101 087204
[19] Wang K, Ren Y, Deng X, Yang S A, Jung J, and Qiao Z 2017 Phys. Rev. B 95 245420
[20] Ren Y, Zeng J, Wang K, Xu F, and Qiao Z 2017 Phys. Rev. B 96 155445
[21] Qiao Z, Jung J, Niu Q, and MacDonald A H 2011 Nano Lett. 11 3453
[22] Qiao Z, Jung J, Lin C, Ren Y, MacDonald A H, and Niu Q 2014 Phys. Rev. Lett. 112 206601
[23] Cheng S G, Liu H W, Jiang H, Sun Q F, and Xie X C 2018 Phys. Rev. Lett. 121 156801
[24] Hou T, Cheng G H, Tse W K, Zeng C G, and Qiao Z H 2018 Phys. Rev. B 98 245417
[25] Jung J, Zhang F, Qiao Z, and MacDonald A H 2011 Phys. Rev. B 84 075418
[26] Zhang Y T, Qiao Z H, and Sun Q F 2013 Phys. Rev. B 87 235405
[27] Bi X, Jung J, and Qiao Z 2015 Phys. Rev. B 92 235421
[28] Ju L, Shi Z W, Nair N, Lv Y C, Jin C H, Velasco Jr J, Ojeda-Aristizabal C, Bechtel H A, Martin M C, Zettl A, Analytis J, and Wang F 2015 Nature 520 650
[29] Li J, Wang K, McFaul K J et al. 2016 Nat. Nanotechnol. 11 1060
[30] Li J, Zhang R X, Yin Z X et al. 2018 Science 362 1149
[31] Pan H, Li X, Zhang F, and Yang S A 2015 Phys. Rev. B 92 041404
[32] Wang M, Liu L, Liu C C, and Yao Y 2016 Phys. Rev. B 93 155412
[33] Anglin J R and Schulz A 2017 Phys. Rev. B 95 045430
[34] Lee C, Kim G, Jung J, and Min H 2016 Phys. Rev. B 94 125438
[35] Kim M, Choi J H, Lee S H, Watanabe K, Taniguchi T, Jhi S H, and Lee H J 2016 Nat. Phys. 12 1022
[36] Yao W, Yang S A, and Niu Q 2009 Phys. Rev. Lett. 102 096801
[37] Zhang F, MacDonald A H, and Mele E J 2013 Proc. Natl. Acad. Sci. USA 110 10546
[38] Yan Z, Hou T, Han Y, Xu X, and Qiao Z 2022 Phys. Rev. B 105 035425
[39] Han Y, You S, and Qiao Z 2022 Phys. Rev. B 105 155301
[40] Yankowitz M, Wang J I J, Birdwell A G, Chen Y A, Watanabe K, Taniguchi T, Jacquod P, San-Jose P, Jarillo-Herrero P, and LeRoy B J 2014 Nat. Mater. 13 786
[41] Martin I, Blanter Y M, and Morpurgo A F 2008 Phys. Rev. Lett. 100 036804
[42] Zeng J, Xue R, Hou T, Han Y, and Qiao Z 2022 Front. Phys. 17 63503
[43] Fumega A O and Lado J L 2023 Nanoscale 15 2181
[44] Wang K, Hou T, Ren Y F et al. 2019 Front. Phys. 14 23501
[45] Enaldiev V V, Moulsdale C, Geim A K, and Fal'ko V I 2023 arXiv:2307.14293 [cond-mat.mes-hall]
[46] Hu J X, Han Y L, Chi X, Omar G J, Al Ezzi M M E, Gou J, Yu X J, Andrivo R, Watanabe K, Taniguchi T, Wee A T S, Qiao Z H, and Ariando A 2024 Adv. Mater. 36 2305763
[47] Garrity K F and Vanderbilt D 2013 Phys. Rev. Lett. 110 116802
[48] Huang S, Kim K, Efimkin D K, Lovorn T, Taniguchi T, Watanabe K, MacDonald A H, Tutuc E, and LeRoy B J 2018 Phys. Rev. Lett. 121 037702
[49] Rickhaus P, Wallbank J, Slizovskiy S, Pisoni R, Overweg H, Lee Y, Eich M, Liu M H, Watanabe K, Taniguchi T, Ihn T, and Ensslin K 2018 Nano Lett. 18 6725
[50] Sunku S S, Ni G X, Jiang B Y, Yoo H, Sternbach A, McLeod A S, Stauber T, Xiong L, Taniguchi T, Watanabe K, Kim P, Fogler M M, and Basov D N 2018 Science 362 1153
[51] Xu S G, Berdyugin A I, Kumaravadivel P, Guinea F, Krishna Kumar R, Bandurin D A, Morozov S V, Kuang W, Tsim B, Liu S, Edgar J H, Grigorieva I V, Fal'ko V I, Kim M, and Geim A K 2019 Nat. Commun. 10 4008
[52] Yoo H, Engelke R, Carr S, Fang S A, Zhang K, Cazeaux P, Sung S H, Hovden R, Tsen A W, Taniguchi T, Watanabe K, Yi G C, Kim M, Luskin M, Tadmor E B, Kaxiras E, and Kim P 2019 Nat. Mater. 18 448
[53] Liu Y W, Su Y, Zhou X F, Yin L J, Yan C, Li S Y, Yan W, Han S, Fu Z Q, Zhang Y, Yang Q, Ren Y N, and He L 2020 Phys. Rev. Lett. 125 236102
[54] Verbakel J D, Yao Q, Sotthewes K, and Zandvliet H J W 2021 Phys. Rev. B 103 165134
[55] Moulsdale C, Knothe A, and Fal'ko V 2022 Phys. Rev. B 105 L201112
[56] Wittig P, Dominguez F, De Beule C, and Recher P 2023 Phys. Rev. B 108 085431
[57] Mondal C, Ghadimi R, and Yang B J 2023 Phys. Rev. B 108 L121405
[58] Latychevskaia T 2023 Nat. Nanotechnol. 18 1126
[59] You S, Hou T, Li Z, and Qiao Z 2022 Phys. Rev. B 106 L161413
[60] Hou T, Ren Y, Quan Y, Jung J, Ren W, and Qiao Z 2020 Phys. Rev. B 101 201403
[61] Hou T, Ren Y, Quan Y, Jung J, Ren W, and Qiao Z 2020 Phys. Rev. B 102 085433
[62] Thompson A P, Aktulga H M, Berger R, Bolintineanu D S, Brown W M, Crozier P S, in 't Veld P J, Kohlmeyer A, Moore S G, Nguyen T D, Shan R, Stevens M J, Tranchida J, Trott C, and Plimpton S J 2022 Comput. Phys. Commun. 271 108171
[63] Hermann K 2012 J. Phys.: Condens. Matter 24 314210
[64] Plimpton S 1995 J. Comput. Phys. 117 1
[65] Wen M, Carr S, Fang S, Kaxiras E, and Tadmor E B 2018 Phys. Rev. B 98 235404
[66] Leconte N, Javvaji S, An J, Samudrala A, and Jung J 2022 Phys. Rev. B 106 115410
[67] Leconte N, Jung J, Lebègue S, and Gould T 2017 Phys. Rev. B 96 195431
[68] Kolmogorov A N and Crespi V H 2005 Phys. Rev. B 71 235415
[69] Brenner D W, Shenderova O A, Harrison J A, Stuart S J, Ni B, and Sinnott S B 2002 J. Phys.: Condens. Matter 14 783
[70] Trambly de Laissardière G, Mayou D, and Magaud L 2012 Phys. Rev. B 86 125413
[71] Nam N N T and Koshino M 2017 Phys. Rev. B 96 075311
[72] Moon P and Koshino M 2014 Phys. Rev. B 90 155406
[73] Yu R, Qi X L, Bernevig A, Fang Z, and Dai X 2011 Phys. Rev. B 84 075119
[74] Vanderbilt D 2018 Berry Phases in Electronic Structure Theory: Electric Polarization, Orbital Magnetization and Topological Insulators (Cambridge: Cambridge University Press)
Related articles from Frontiers Journals
[1] Guangyu Wang, Ke Yang, Yaozhenghang Ma, Lu Liu, Di Lu, Yuxuan Zhou, and Hua Wu. Superexchange Interactions and Magnetic Anisotropy in MnPSe$_3$ Monolayer[J]. Chin. Phys. Lett., 2023, 40(7): 077301
[2] V. D. Esin, A. A. Avakyants, A. V. Timonina, N. N. Kolesnikov, and E. V. Deviatov. Second-Harmonic Response in Magnetic Nodal-Line Semimetal Fe$_3$GeTe$_2$[J]. Chin. Phys. Lett., 2022, 39(9): 077301
[3] Chang Wang, Wenwu Pan, Konstantin Kolokolov, Shumin Wang. Band Structure and Optical Gain of InGaAs/GaAsBi Type-II Quantum Wells Modeled by the $k\cdot p$ Model[J]. Chin. Phys. Lett., 2018, 35(5): 077301
[4] Wen-Cheng Ji, Jun-Ren Shi. Topological Phonon Modes in a Two-Dimensional Wigner Crystal[J]. Chin. Phys. Lett., 2017, 34(3): 077301
[5] LI Ning, ZHU Wen-Huan, LIANG Qi, DING Guo-Hui. The Edge Magnetization and Strip Phase of Graphene Quantum Dots with Long-Range Coulomb Interaction[J]. Chin. Phys. Lett., 2014, 31(04): 077301
[6] WU Bin-He, CHENG Xiao, WANG Chun-Rui, GONG Wei-Jiang. Probing Majorana Bound States in T-Shaped Junctions[J]. Chin. Phys. Lett., 2014, 31(03): 077301
[7] ZHANG Ying-Ying, ZHAO Dan, YOU Shu-Yan, SONG Yuan-Hong, WANG You-Nian. Wake Effects in Ion Transport through Carbon Nanotubes[J]. Chin. Phys. Lett., 2013, 30(9): 077301
[8] SHI Yong, MA Zhong-Yuan, CHEN Kun-Ji, JIANG Xiao-Fan, LI Wei, HUANG Xin-Fan, XU Ling, XU Jun, FENG Duan . The Effect of Multiple Interface States and nc-Si Dots in a Nc-Si Floating Gate MOS Structure Measured by their GV Characteristics[J]. Chin. Phys. Lett., 2013, 30(7): 077301
[9] LI Ming, SUN Gang, FAN Li-Bo. A New Method to Calculate the Rashba Spin Splitting in III-Nitride Heterostructures[J]. Chin. Phys. Lett., 2012, 29(12): 077301
[10] YAO Jiang-Hong, JIA Guo-Zhi, ZHANG-Yan, LI Wei-Wu, SHU Yong-Chun, WANG Zhan-Guo, XU Jing-Jun. Resonant Tunnelling in Barrier-in-Well and Well-in-Well Structures[J]. Chin. Phys. Lett., 2008, 25(12): 077301
[11] XIE Wen-Fang. Binding Energies of Negatively Charged Donors in a Gaussian Potential Quantum Dot[J]. Chin. Phys. Lett., 2005, 22(7): 077301
[12] DONG Qing-Rui, XU Ying-Qiang, ZHANG Shi-Yong, NIU Zhi-Chuan. Role of Interactions in Electronic Structure of a Two-Electron Quantum Dot Molecule[J]. Chin. Phys. Lett., 2004, 21(12): 077301
[13] LUO Ying, DUAN Su-Qing, FAN Wen-Bin, ZAO Xian-Geng, WANG Li-Min, MA Ben-Kun. Dynamic Localization of a One-Dimensional Quantum Dot Array in an ac Electric Field[J]. Chin. Phys. Lett., 2002, 19(7): 077301
Viewed
Full text


Abstract