Chin. Phys. Lett.  2024, Vol. 41 Issue (7): 077101    DOI: 10.1088/0256-307X/41/7/077101
CONDENSED MATTER: ELECTRONIC STRUCTURE, ELECTRICAL, MAGNETIC, AND OPTICAL PROPERTIES |
Ultrasensitive Mechanical Sensor Using Tunable Ordered Array of Metallic and Insulating States in Vanadium Dioxide
Zecheng Ma1†, Shengnan Yan1†, Fanqiang Chen1, Yudi Dai1, Zenglin Liu1, Kang Xu1, Tao Xu2, Zhanqin Tong1, Moyu Chen1, Lizheng Wang1, Pengfei Wang1, Litao Sun2, Bin Cheng3, Shi-Jun Liang1*, and Feng Miao1*
1Institute of Brain-Inspired Intelligence, National Laboratory of Solid State Microstructures, School of Physics, Collaborative Innovation Center of Advanced Microstructures, Nanjing University, Nanjing 210093, China
2SEU-FEI Nano-Pico Center, Key Laboratory of MEMS of Ministry of Education, Southeast University, Nanjing 210096, China
3Institute of Interdisciplinary of Physical Sciences, School of Science, Nanjing University of Science and Technology, Nanjing 210094, China
Cite this article:   
Zecheng Ma, Shengnan Yan, Fanqiang Chen et al  2024 Chin. Phys. Lett. 41 077101
Download: PDF(7577KB)   PDF(mobile)(8005KB)   HTML
Export: BibTeX | EndNote | Reference Manager | ProCite | RefWorks
Abstract Detecting tiny deformations or vibrations, particularly those associated with strains below 1%, is essential in various technological applications. Traditional intrinsic materials, including metals and semiconductors, face challenges in simultaneously achieving initial metallic state and strain-induced insulating state, hindering the development of highly sensitive mechanical sensors. Here we report an ultrasensitive mechanical sensor based on a strain-induced tunable ordered array of metallic and insulating states in the single-crystal bronze-phase vanadium dioxide [VO$_{2}$(B)] quantum material. It is shown that the initial metallic state in the VO$_{2}$(B) flake can be tuned to the insulating state by applying a weak uniaxial tensile strain. Such a unique property gives rise to a record-high gauge factor of above 607970, surpassing previous values by an order of magnitude, with excellent linearity and mechanical resilience as well as durability. As a proof-of-concept application, we use our proposed mechanical sensor to demonstrate precise sensing of the micro piece, gentle airflows and water droplets. We attribute the superior performance of the sensor to the strain-induced continuous metal-insulator transition in the single-crystal VO$_{2}$(B) flake, evidenced by experimental and simulation results. Our findings highlight the potential of exploiting correlated quantum materials for next-generation ultrasensitive flexible mechanical sensors, addressing critical limitations in traditional materials.
Received: 15 April 2024      Editors' Suggestion Published: 18 July 2024
PACS:  07.07.Df (Sensors (chemical, optical, electrical, movement, gas, etc.); remote sensing)  
  07.10.Pz (Instruments for strain, force, and torque)  
  71.30.+h (Metal-insulator transitions and other electronic transitions)  
  72.80.Ga (Transition-metal compounds)  
TRENDMD:   
URL:  
https://cpl.iphy.ac.cn/10.1088/0256-307X/41/7/077101       OR      https://cpl.iphy.ac.cn/Y2024/V41/I7/077101
Service
E-mail this article
E-mail Alert
RSS
Articles by authors
Zecheng Ma
Shengnan Yan
Fanqiang Chen
Yudi Dai
Zenglin Liu
Kang Xu
Tao Xu
Zhanqin Tong
Moyu Chen
Lizheng Wang
Pengfei Wang
Litao Sun
Bin Cheng
Shi-Jun Liang
and Feng Miao
[1] Liu L, Niu S, Zhang J, Mu Z, Li J, Li B, Meng X, Zhang C, Wang Y, Hou T, Han Z, Yang S, and Ren L 2022 Adv. Mater. 34 2200823
[2] Pang C, Lee G Y, Kim T i, Kim S M, Kim H N, Ahn S H, and Suh K Y 2012 Nat. Mater. 11 795
[3] Wang Z L 2012 Adv. Mater. 24 280
[4] Cao J, Wang Q, and Dai H 2003 Phys. Rev. Lett. 90 157601
[5] Xu K, Wang K, Zhao W, Bao W, Liu E, Ren Y, Wang M, Fu Y, Zeng J, Li Z, Zhou W, Song F, Wang X, Shi Y, Wan X, Fuhrer M S, Wang B, Qiao Z, Miao F, and Xing D 2015 Nat. Commun. 6 8119
[6] Kang D, Pikhitsa P V, Choi Y W, Lee C, Shin S S, Piao L F, Park B, Suh K Y, Kim T i, and Choi M 2014 Nature 516 222
[7] Park B, Kim J, Kang D, Jeong C, Kim K S, Kim J U, Yoo P J, and Kim T i 2016 Adv. Mater. 28 8130
[8] Nguyen T, Dinh T, Foisal A R M, Phan H P, Nguyen T K, Nguyen N T, and Dao D V 2019 Nat. Commun. 10 4139
[9] Yan W, Fuh H R, Lv Y, Chen K Q, Tsai T Y, Wu Y R, Shieh T H, Hung K M, Li J, Zhang D, Ó Coileáin C, Arora S K, Wang Z, Jiang Z, Chang C R, and Wu H C 2021 Nat. Commun. 12 2018
[10] Araromi O A, Graule M A, Dorsey K L, Castellanos S, Foster J R, Hsu W H, Passy A E, Vlassak J J, Weaver J C, Walsh C J, and Wood R J 2020 Nature 587 219
[11] Rata A D, Herklotz A, Nenkov K, Schultz L, and Dörr K 2008 Phys. Rev. Lett. 100 076401
[12] Park J H, Coy J M, Kasirga T S, Huang C, Fei Z, Hunter S, and Cobden D H 2013 Nature 500 431
[13] Théobald F, Cabala R, and Bernard J 1976 J. Solid State Chem. 17 431
[14] Oka Y, Yao T, Yamamoto N, Ueda Y, and Hayashi A 1993 J. Solid State Chem. 105 271
[15] Liu J, Li Q, Wang T, Yu D, and Li Y 2004 Angew. Chem. Int. Ed. 43 5048
[16] Ma Z, Yan S, Liu Z, Xu T, Chen F, Chen S, Cao T, Sun L, Cheng B, Liang S J, and Miao F 2024 Chin. Phys. B 33 067103
[17] Lee C, Wei X, Kysar J W, and Hone J 2008 Science 321 385
[18] Bertolazzi S, Brivio J, and Kis A 2011 ACS Nano 5 9703
[19] Wang L, Zihlmann S, Baumgartner A, Overbeck J, Watanabe K, Taniguchi T, Makk P, and Schönenberger C 2019 Nano Lett. 19 4097
[20] Hu B, Ding Y, Chen W, Kulkarni D, Shen Y, Tsukruk V V, and Wang Z L 2010 Adv. Mater. 22 5134
[21] Wang Y, Wang C, Liang S J, Ma Z, Xu K, Liu X, Zhang L, Admasu A S, Cheong S W, Wang L, Chen M, Liu Z, Cheng B, Ji W, and Miao F 2020 Adv. Mater. 32 2004533
[22] Togaya M 1997 Phys. Rev. Lett. 79 2474
[23] Li X, Yin Z, Zhang X, Wang Y, Wang D, Gao M, Meng J, Wu J, and You J 2019 Adv. Mater. Technol. 4 1800695
[24] Zhou J, Gu Y, Fei P, Mai W, Gao Y, Yang R, Bao G, and Wang Z L 2008 Nano Lett. 8 3035
[25] Yin B, Liu X, Gao H, Fu T, and Yao J 2018 Nat. Commun. 9 5161
[26] Wu J M, Chen C Y, Zhang Y, Chen K H, Yang Y, Hu Y, He J H, and Wang Z L 2012 ACS Nano 6 4369
[27] Boland C S, Khan U, Ryan G, Barwich S, Charifou R, Harvey A, Backes C, Li Z, Ferreira M S, Möbius M E, Young R J, and Coleman J N 2016 Science 354 1257
[28] Zhao J, He C, Yang R, Shi Z, Cheng M, Yang W, Xie G, Wang D, Shi D, and Zhang G 2012 Appl. Phys. Lett. 101 063112
[29] Li X, Zhang R, Yu W, Wang K, Wei J, Wu D, Cao A, Li Z, Cheng Y, Zheng Q, Ruoff R S, and Zhu H 2012 Sci. Rep. 2 870
[30] Qi J, Lan Y W, Stieg A Z, Chen J H, Zhong Y L, Li L J, Chen C D, Zhang Y, and Wang K L 2015 Nat. Commun. 6 7430
[31] Zhang Z, Li L, Horng J, Wang N Z, Yang F, Yu Y, Zhang Y, Chen G, Watanabe K, Taniguchi T, Chen X H, Wang F, and Zhang Y 2017 Nano Lett. 17 6097
[32] Li X, Wei X, Xu T, Pan D, Zhao J, and Chen Q 2015 Adv. Mater. 27 2852
[33] Feng W, Zheng W, Gao F, Chen X, Liu G, Hasan T, Cao W, and Hu P 2016 Chem. Mater. 28 4278
[34] An C, Xu Z, Shen W, Zhang R, Sun Z, Tang S, Xiao Y F, Zhang D, Sun D, Hu X, Hu C, Yang L, and Liu J 2019 ACS Nano 13 3310
[35] Cao J, Ertekin E, Srinivasan V, Fan W, Huang S, Zheng H, Yim J W L, Khanal D R, Ogletree D F, Grossman J C, and Wu J 2009 Nat. Nanotechnol. 4 732
[36] Cao J, Gu Y, Fan W, Chen L Q, Ogletree D F, Chen K, Tamura N, Kunz M, Barrett C, Seidel J, and Wu J 2010 Nano Lett. 10 2667
[37] Tselev A, Luk'yanchuk I A, Ivanov I N, Budai J D, Tischler J Z, Strelcov E, Kolmakov A, and Kalinin S V 2010 Nano Lett. 10 4409
[38] Shi R, Chen Y, Cai X, Lian Q, Zhang Z, Shen N, Amini A, Wang N, and Cheng C 2021 Nat. Commun. 12 4214
[39] Liu M K, Wagner M, Abreu E, Kittiwatanakul S, McLeod A, Fei Z, Goldflam M, Dai S, Fogler M M, Lu J, Wolf S A, Averitt R D, and Basov D N 2013 Phys. Rev. Lett. 111 096602
[40] Jones A C, Berweger S, Wei J, Cobden D, and Raschke M B 2010 Nano Lett. 10 1574
[41] Popuri S R, Artemenko A, Decourt R, Josse M, Chung U C, Michau D, Maglione M, Villesuzanne A, and Pollet M 2015 J. Phys. Chem. C 119 25085
[42] Roldán R, Castellanos-Gomez A, Cappelluti E, and Guinea F 2015 J. Phys.: Condens. Matter 27 313201
Related articles from Frontiers Journals
[1] Tai-Hao Cui, Ji Li, Quan Yuan, Ya-Qi Wei, Shuang-Qing Dai, Pei-Dong Li, Fei Zhou, Jian-Qi Zhang, Liang Chen, and Mang Feng. Stochastic Resonance in a Single-Ion Nonlinear Mechanical Oscillator[J]. Chin. Phys. Lett., 2023, 40(8): 077101
[2] Shaochun Lin, Tian Tian, Peiran Yin, Pu Huang, Liang Zhang, and Jiangfeng Du. Micro-Gas Flow Induced Stochastic Resonance of a Nonlinear Nanomechanical Resonator[J]. Chin. Phys. Lett., 2021, 38(2): 077101
[3] Zhi Meng, Lei Shen, Zongwei Ma, Muhammad Adnan Aslam, Liqiang Xu, Xueli Xu, Wang Zhu, Long Cheng, Yuecheng Bian, Li Pi, Chun Zhou, Zhigao Sheng. Transient Photoconductivity in LaRhO$_{3}$ Thin Film[J]. Chin. Phys. Lett., 2019, 36(11): 077101
[4] Li-Jun Yang, Yan Li. Pascal Realization by Comb-Spectral-Interferometry Based Refractometer[J]. Chin. Phys. Lett., 2018, 35(10): 077101
[5] Xiang-Mi Zhan, Quan Wang, Kun Wang, Wei Li, Hong-Ling Xiao, Chun Feng, Li-Juan Jiang, Cui-Mei Wang, Xiao-Liang Wang, Zhan-Guo Wang. Fast Electrical Detection of Carcinoembryonic Antigen Based on AlGaN/GaN High Electron Mobility Transistor Aptasensor[J]. Chin. Phys. Lett., 2017, 34(9): 077101
[6] Xiang-Mi Zhan, Mei-Lan Hao, Quan Wang, Wei Li, Hong-Ling Xiao, Chun Feng, Li-Juan Jiang, Cui-Mei Wang, Xiao-Liang Wang, Zhan-Guo Wang. Highly Sensitive Detection of Deoxyribonucleic Acid Hybridization Using Au-Gated AlInN/GaN High Electron Mobility Transistor-Based Sensors[J]. Chin. Phys. Lett., 2017, 34(4): 077101
[7] Yu-Long Cao, Fei Yang, Dan Xu, Qing Ye, Hai-Wen Cai, Zu-Jie Fang. Phase-Sensitive Optical Time-Domain Reflectometer Based on a 120$^{\circ}$-Phase-Difference Michelson Interferometer[J]. Chin. Phys. Lett., 2016, 33(05): 077101
[8] CHEN Di, ZHAO Bai-Qin, ZHANG Xin. High Signal-to-Noise Ratio Hall Devices with a 2D Structure of Dual δ-Doped GaAs/AlGaAs for Low Field Magnetometry[J]. Chin. Phys. Lett., 2015, 32(12): 077101
[9] ZHANG Yong, XIE Long-Zhen, LI Hai-Rong, WANG Peng, LIU Su, PENG Ying-Quan, ZHANG Miao. Facile Synthesis of Rose-Like NiO Nanoparticles and Their Ethanol Gas-Sensing Property[J]. Chin. Phys. Lett., 2015, 32(09): 077101
[10] M. Chitra, K. Uthayarani, N. Rajasekaran, N. Neelakandeswari, E. K. Girija, D. Pathinettam Padiyan. Rice Husk Templated Mesoporous ZnO Nanostructures for Ethanol Sensing at Room Temperature[J]. Chin. Phys. Lett., 2015, 32(07): 077101
[11] XIAO Li-Ping, WANG Fa-Qiang, LIANG Rui-Sheng, ZOU Shi-Wei, HU Miao. A High-Sensitivity Refractive-Index Sensor Based on Plasmonic Waveguides Asymmetrically Coupled with a Nanodisk Resonator[J]. Chin. Phys. Lett., 2015, 32(07): 077101
[12] ZHANG Yun-Shan, QIAO Xue-Guang, SHAO Min, LIU Qin-Peng. In-Fiber Mach–Zehnder Interferometer Based on Waist-Enlarged Taper and Core-Mismatching for Strain Sensing[J]. Chin. Phys. Lett., 2015, 32(06): 077101
[13] YUAN Heng, ZHANG Ji-Xing, ZHANG Chen, ZHANG Ning, XU Li-Xia, DING Ming, Patrick J. Clarke. Low Gate Voltage Operated Multi-emitter-dot H+ Ion-Sensitive Gated Lateral Bipolar Junction Transistor[J]. Chin. Phys. Lett., 2015, 32(02): 077101
[14] FENG Zhao-Bin, LIU Duo. Enhanced Second-Order Resonance Actuation and Frequency Response Modulation of Microcantilever by Dual Coplanar Counter Electrodes[J]. Chin. Phys. Lett., 2013, 30(10): 077101
[15] HUANG Wan-Xia . Fano-Resonance of a Planar Metamaterial[J]. Chin. Phys. Lett., 2013, 30(7): 077101
Viewed
Full text


Abstract