CONDENSED MATTER: ELECTRONIC STRUCTURE, ELECTRICAL, MAGNETIC, AND OPTICAL PROPERTIES |
|
|
|
|
Ultrasensitive Mechanical Sensor Using Tunable Ordered Array of Metallic and Insulating States in Vanadium Dioxide |
Zecheng Ma1†, Shengnan Yan1†, Fanqiang Chen1, Yudi Dai1, Zenglin Liu1, Kang Xu1, Tao Xu2, Zhanqin Tong1, Moyu Chen1, Lizheng Wang1, Pengfei Wang1, Litao Sun2, Bin Cheng3, Shi-Jun Liang1*, and Feng Miao1* |
1Institute of Brain-Inspired Intelligence, National Laboratory of Solid State Microstructures, School of Physics, Collaborative Innovation Center of Advanced Microstructures, Nanjing University, Nanjing 210093, China 2SEU-FEI Nano-Pico Center, Key Laboratory of MEMS of Ministry of Education, Southeast University, Nanjing 210096, China 3Institute of Interdisciplinary of Physical Sciences, School of Science, Nanjing University of Science and Technology, Nanjing 210094, China
|
|
Cite this article: |
Zecheng Ma, Shengnan Yan, Fanqiang Chen et al 2024 Chin. Phys. Lett. 41 077101 |
|
|
Abstract Detecting tiny deformations or vibrations, particularly those associated with strains below 1%, is essential in various technological applications. Traditional intrinsic materials, including metals and semiconductors, face challenges in simultaneously achieving initial metallic state and strain-induced insulating state, hindering the development of highly sensitive mechanical sensors. Here we report an ultrasensitive mechanical sensor based on a strain-induced tunable ordered array of metallic and insulating states in the single-crystal bronze-phase vanadium dioxide [VO$_{2}$(B)] quantum material. It is shown that the initial metallic state in the VO$_{2}$(B) flake can be tuned to the insulating state by applying a weak uniaxial tensile strain. Such a unique property gives rise to a record-high gauge factor of above 607970, surpassing previous values by an order of magnitude, with excellent linearity and mechanical resilience as well as durability. As a proof-of-concept application, we use our proposed mechanical sensor to demonstrate precise sensing of the micro piece, gentle airflows and water droplets. We attribute the superior performance of the sensor to the strain-induced continuous metal-insulator transition in the single-crystal VO$_{2}$(B) flake, evidenced by experimental and simulation results. Our findings highlight the potential of exploiting correlated quantum materials for next-generation ultrasensitive flexible mechanical sensors, addressing critical limitations in traditional materials.
|
|
Received: 15 April 2024
Editors' Suggestion
Published: 18 July 2024
|
|
PACS: |
07.07.Df
|
(Sensors (chemical, optical, electrical, movement, gas, etc.); remote sensing)
|
|
07.10.Pz
|
(Instruments for strain, force, and torque)
|
|
71.30.+h
|
(Metal-insulator transitions and other electronic transitions)
|
|
72.80.Ga
|
(Transition-metal compounds)
|
|
|
|
|
[1] | Liu L, Niu S, Zhang J, Mu Z, Li J, Li B, Meng X, Zhang C, Wang Y, Hou T, Han Z, Yang S, and Ren L 2022 Adv. Mater. 34 2200823 |
[2] | Pang C, Lee G Y, Kim T i, Kim S M, Kim H N, Ahn S H, and Suh K Y 2012 Nat. Mater. 11 795 |
[3] | Wang Z L 2012 Adv. Mater. 24 280 |
[4] | Cao J, Wang Q, and Dai H 2003 Phys. Rev. Lett. 90 157601 |
[5] | Xu K, Wang K, Zhao W, Bao W, Liu E, Ren Y, Wang M, Fu Y, Zeng J, Li Z, Zhou W, Song F, Wang X, Shi Y, Wan X, Fuhrer M S, Wang B, Qiao Z, Miao F, and Xing D 2015 Nat. Commun. 6 8119 |
[6] | Kang D, Pikhitsa P V, Choi Y W, Lee C, Shin S S, Piao L F, Park B, Suh K Y, Kim T i, and Choi M 2014 Nature 516 222 |
[7] | Park B, Kim J, Kang D, Jeong C, Kim K S, Kim J U, Yoo P J, and Kim T i 2016 Adv. Mater. 28 8130 |
[8] | Nguyen T, Dinh T, Foisal A R M, Phan H P, Nguyen T K, Nguyen N T, and Dao D V 2019 Nat. Commun. 10 4139 |
[9] | Yan W, Fuh H R, Lv Y, Chen K Q, Tsai T Y, Wu Y R, Shieh T H, Hung K M, Li J, Zhang D, Ó Coileáin C, Arora S K, Wang Z, Jiang Z, Chang C R, and Wu H C 2021 Nat. Commun. 12 2018 |
[10] | Araromi O A, Graule M A, Dorsey K L, Castellanos S, Foster J R, Hsu W H, Passy A E, Vlassak J J, Weaver J C, Walsh C J, and Wood R J 2020 Nature 587 219 |
[11] | Rata A D, Herklotz A, Nenkov K, Schultz L, and Dörr K 2008 Phys. Rev. Lett. 100 076401 |
[12] | Park J H, Coy J M, Kasirga T S, Huang C, Fei Z, Hunter S, and Cobden D H 2013 Nature 500 431 |
[13] | Théobald F, Cabala R, and Bernard J 1976 J. Solid State Chem. 17 431 |
[14] | Oka Y, Yao T, Yamamoto N, Ueda Y, and Hayashi A 1993 J. Solid State Chem. 105 271 |
[15] | Liu J, Li Q, Wang T, Yu D, and Li Y 2004 Angew. Chem. Int. Ed. 43 5048 |
[16] | Ma Z, Yan S, Liu Z, Xu T, Chen F, Chen S, Cao T, Sun L, Cheng B, Liang S J, and Miao F 2024 Chin. Phys. B 33 067103 |
[17] | Lee C, Wei X, Kysar J W, and Hone J 2008 Science 321 385 |
[18] | Bertolazzi S, Brivio J, and Kis A 2011 ACS Nano 5 9703 |
[19] | Wang L, Zihlmann S, Baumgartner A, Overbeck J, Watanabe K, Taniguchi T, Makk P, and Schönenberger C 2019 Nano Lett. 19 4097 |
[20] | Hu B, Ding Y, Chen W, Kulkarni D, Shen Y, Tsukruk V V, and Wang Z L 2010 Adv. Mater. 22 5134 |
[21] | Wang Y, Wang C, Liang S J, Ma Z, Xu K, Liu X, Zhang L, Admasu A S, Cheong S W, Wang L, Chen M, Liu Z, Cheng B, Ji W, and Miao F 2020 Adv. Mater. 32 2004533 |
[22] | Togaya M 1997 Phys. Rev. Lett. 79 2474 |
[23] | Li X, Yin Z, Zhang X, Wang Y, Wang D, Gao M, Meng J, Wu J, and You J 2019 Adv. Mater. Technol. 4 1800695 |
[24] | Zhou J, Gu Y, Fei P, Mai W, Gao Y, Yang R, Bao G, and Wang Z L 2008 Nano Lett. 8 3035 |
[25] | Yin B, Liu X, Gao H, Fu T, and Yao J 2018 Nat. Commun. 9 5161 |
[26] | Wu J M, Chen C Y, Zhang Y, Chen K H, Yang Y, Hu Y, He J H, and Wang Z L 2012 ACS Nano 6 4369 |
[27] | Boland C S, Khan U, Ryan G, Barwich S, Charifou R, Harvey A, Backes C, Li Z, Ferreira M S, Möbius M E, Young R J, and Coleman J N 2016 Science 354 1257 |
[28] | Zhao J, He C, Yang R, Shi Z, Cheng M, Yang W, Xie G, Wang D, Shi D, and Zhang G 2012 Appl. Phys. Lett. 101 063112 |
[29] | Li X, Zhang R, Yu W, Wang K, Wei J, Wu D, Cao A, Li Z, Cheng Y, Zheng Q, Ruoff R S, and Zhu H 2012 Sci. Rep. 2 870 |
[30] | Qi J, Lan Y W, Stieg A Z, Chen J H, Zhong Y L, Li L J, Chen C D, Zhang Y, and Wang K L 2015 Nat. Commun. 6 7430 |
[31] | Zhang Z, Li L, Horng J, Wang N Z, Yang F, Yu Y, Zhang Y, Chen G, Watanabe K, Taniguchi T, Chen X H, Wang F, and Zhang Y 2017 Nano Lett. 17 6097 |
[32] | Li X, Wei X, Xu T, Pan D, Zhao J, and Chen Q 2015 Adv. Mater. 27 2852 |
[33] | Feng W, Zheng W, Gao F, Chen X, Liu G, Hasan T, Cao W, and Hu P 2016 Chem. Mater. 28 4278 |
[34] | An C, Xu Z, Shen W, Zhang R, Sun Z, Tang S, Xiao Y F, Zhang D, Sun D, Hu X, Hu C, Yang L, and Liu J 2019 ACS Nano 13 3310 |
[35] | Cao J, Ertekin E, Srinivasan V, Fan W, Huang S, Zheng H, Yim J W L, Khanal D R, Ogletree D F, Grossman J C, and Wu J 2009 Nat. Nanotechnol. 4 732 |
[36] | Cao J, Gu Y, Fan W, Chen L Q, Ogletree D F, Chen K, Tamura N, Kunz M, Barrett C, Seidel J, and Wu J 2010 Nano Lett. 10 2667 |
[37] | Tselev A, Luk'yanchuk I A, Ivanov I N, Budai J D, Tischler J Z, Strelcov E, Kolmakov A, and Kalinin S V 2010 Nano Lett. 10 4409 |
[38] | Shi R, Chen Y, Cai X, Lian Q, Zhang Z, Shen N, Amini A, Wang N, and Cheng C 2021 Nat. Commun. 12 4214 |
[39] | Liu M K, Wagner M, Abreu E, Kittiwatanakul S, McLeod A, Fei Z, Goldflam M, Dai S, Fogler M M, Lu J, Wolf S A, Averitt R D, and Basov D N 2013 Phys. Rev. Lett. 111 096602 |
[40] | Jones A C, Berweger S, Wei J, Cobden D, and Raschke M B 2010 Nano Lett. 10 1574 |
[41] | Popuri S R, Artemenko A, Decourt R, Josse M, Chung U C, Michau D, Maglione M, Villesuzanne A, and Pollet M 2015 J. Phys. Chem. C 119 25085 |
[42] | Roldán R, Castellanos-Gomez A, Cappelluti E, and Guinea F 2015 J. Phys.: Condens. Matter 27 313201 |
|
|
Viewed |
|
|
|
Full text
|
|
|
|
|
Abstract
|
|
|
|
|