Chin. Phys. Lett.  2024, Vol. 41 Issue (7): 074205    DOI: 10.1088/0256-307X/41/7/074205
FUNDAMENTAL AREAS OF PHENOMENOLOGY(INCLUDING APPLICATIONS) |
Manipulating the Spatial Structure of Second-Order Quantum Coherence Using Entangled Photons
Shuang-Yin Huang1,2†, Jing Gao1,2†, Zhi-Cheng Ren1,2, Zi-Mo Cheng1,2, Wen-Zheng Zhu1,2, Shu-Tian Xue1,2, Yan-Chao Lou1,2, Zhi-Feng Liu1,2, Chao Chen1,2*, Fei Zhu3, Li-Ping Yang4*, Xi-Lin Wang1,2,5,6*, and Hui-Tian Wang1,2,7
1National Laboratory of Solid State Microstructures and School of Physics, Nanjing University, Nanjing 210093, China
2Collaborative Innovation Center of Advanced Microstructures, Nanjing University, Nanjing 210093, China
3Intelligent Scientific Systems Co. Limited, Beijing 102208, China
4Center for Quantum Sciences and School of Physics, Northeast Normal University, Changchun 130024, China
5Hefei National Laboratory, Hefei 230088, China
6Synergetic Innovation Center of Quantum Information and Quantum Physics, University of Science and Technology of China, Hefei 230026, China
7Collaborative Innovation Center of Extreme Optics, Shanxi University, Taiyuan 030006, China
Cite this article:   
Shuang-Yin Huang, Jing Gao, Zhi-Cheng Ren et al  2024 Chin. Phys. Lett. 41 074205
Download: PDF(19267KB)   PDF(mobile)(19893KB)   HTML
Export: BibTeX | EndNote | Reference Manager | ProCite | RefWorks
Abstract High-order quantum coherence reveals the statistical correlation of quantum particles. Manipulation of quantum coherence of light in the temporal domain enables the production of the single-photon source, which has become one of the most important quantum resources. High-order quantum coherence in the spatial domain plays a crucial role in a variety of applications, such as quantum imaging, holography, and microscopy. However, the active control of second-order spatial quantum coherence remains a challenging task. Here we predict theoretically and demonstrate experimentally the first active manipulation of second-order spatial quantum coherence, which exhibits the capability of switching between bunching and anti-bunching, by mapping the entanglement of spatially structured photons. We also show that signal processing based on quantum coherence exhibits robust resistance to intensity disturbance. Our findings not only enhance existing applications but also pave the way for broader utilization of higher-order spatial quantum coherence.
Received: 14 May 2024      Express Letter Published: 26 June 2024
PACS:  42.50.-p (Quantum optics)  
  42.50.Tx (Optical angular momentum and its quantum aspects)  
TRENDMD:   
URL:  
https://cpl.iphy.ac.cn/10.1088/0256-307X/41/7/074205       OR      https://cpl.iphy.ac.cn/Y2024/V41/I7/074205
Service
E-mail this article
E-mail Alert
RSS
Articles by authors
Shuang-Yin Huang
Jing Gao
Zhi-Cheng Ren
Zi-Mo Cheng
Wen-Zheng Zhu
Shu-Tian Xue
Yan-Chao Lou
Zhi-Feng Liu
Chao Chen
Fei Zhu
Li-Ping Yang
Xi-Lin Wang
and Hui-Tian Wang
[1] Hanbury Brown R and Twiss R Q 1956 Nature 177 27
[2] Glauber R J 1963 Phys. Rev. 130 2529
[3] Hanbury Brown R and Twiss R Q 1956 Nature 178 1046
[4] Bromberg Y, Lahini Y, Small E, and Silberberg Y 2010 Nat. Photonics 4 721
[5] Magaña-Loaiza O S, Mirhosseini M, Cross R M, Rafsanjani S M H, and Boyd R W 2016 Sci. Adv. 2 e1501143
[6] Henny M, Oberholzer S, Strunk C, Heinzel T, Ensslin K, Holland M, and Schönenberger C 1999 Science 284 296
[7] Oliver W D, Kim J, Liu R C, and Yamamoto Y 1999 Science 284 299
[8] Schellekens M, Hoppeler R, Perrin A, Gomes J V, Boiron D, Aspect A, and Westbrook C I 2005 Science 310 648
[9] Öttl A, Ritter S, Köhl M, and Esslinger T 2005 Phys. Rev. Lett. 95 090404
[10] Jeltes T, McNamara J M, Hogervorst W, Vassen W, Krachmalnicoff V, Schellekens M, Perrin A, Chang H, Boiron D, Aspect A, and Westbrook C I 2007 Nature 445 402
[11] Rosenberg J S, Christakis L, Guardado-Sanchez E, Yan Z Z, and Bakr W S 2022 Nat. Phys. 18 1062
[12] Perrin A, Bücker R, Manz S, Betz T, Koller C, Plisson T, Schumm T, and Schmiedmayer J 2012 Nat. Phys. 8 195
[13] Cayla H, Butera S, Carcy C, Tenart A, Hercé G, Mancini M, Aspect A, Carusotto I, and Clément D 2020 Phys. Rev. Lett. 125 165301
[14] He Y M, He Y, Wei Y J, Wu D, Atatüre M, Schneider C, Höfling S, Kamp M, Lu C Y, and Pan J W 2013 Nat. Nanotechnol. 8 213
[15] Ding X, He Y, Duan Z C, Gregersen N, Chen M C, Unsleber S, Maier S, Schneider C, Kamp M, Höfling S, Lu C Y, and Pan J W 2016 Phys. Rev. Lett. 116 020401
[16] Somaschi N, Giesz V, De Santis L, Loredo J C, Almeida M P, Hornecker G, Portalupi S L, Grange T, Antón C, Demory J, Gómez C, Sagnes I, Lanzillotti-Kimura N D, Lemaítre A, Auffeves A, White A G, Lanco L, and Senellart P 2016 Nat. Photonics 10 340
[17] Tomm N, Javadi A, Antoniadis N O, Najer D, Löbl M C, Korsch A R, Schott R, Valentin S R, Wieck A D, Ludwig A, and Warburton R J 2021 Nat. Nanotechnol. 16 399
[18] Tang J S, Li Y L, Xu X Y, Xiang G Y, Li C F, and Guo G C 2012 Nat. Photonics 6 600
[19] Wen Y L, Wang Y F, Tian L M, Zhang S C, Li J F, Du J S, Yan H, and Zhu S L 2023 Nat. Photonics 17 717
[20] Lu C Y and Pan J W 2021 Nat. Nanotechnol. 16 1294
[21] Chu X L, Götzinger S, and Sandoghdar V 2017 Nat. Photonics 11 58
[22] Wang H, Qin J, Chen S, Chen M C, You X, Ding X, Huo Y H, Yu Y, Schneider C, Höfling S, Scully M, Lu C Y, and Pan J W 2020 Phys. Rev. Lett. 125 153601
[23] Wang H, Qin J, Ding X, Chen M C, Chen S, You X, He Y M, Jiang X, You L, Wang Z, Schneider C, Renema J J, Höfling S, Lu C Y, and Pan J W 2019 Phys. Rev. Lett. 123 250503
[24] Cogan D, Su Z E, Kenneth O, and Gershoni D 2023 Nat. Photonics 17 324
[25] Short R and Mandel L 1983 Phys. Rev. Lett. 51 384
[26] Nogueira W A T, Walborn S P, Pádua S, and Monken C H 2001 Phys. Rev. Lett. 86 4009
[27] Liu R, Kong L J, Si Y, Wang Z X, Qi W R, Tu C H, Li Y N, and Wang H T 2019 Chin. Phys. Lett. 36 044205
[28] Nogueira W A T, Walborn S P, Pádua S, and Monken C H 2004 Phys. Rev. Lett. 92 043602
[29] Wolf S, Richter S, von Zanthier J, and Schmidt-Kaler F 2020 Phys. Rev. Lett. 124 063603
[30] Valencia A, Scarcelli G, D'Angelo M, and Shih Y 2005 Phys. Rev. Lett. 94 063601
[31] Si Y, Kong L J, Li Y N, Tu C H, and Wang H T 2016 Chin. Phys. Lett. 33 034203
[32] Oppel S, Büttner T, Kok P, and von Zanthier J 2012 Phys. Rev. Lett. 109 233603
[33] Strekalov D V, Sergienko A V, Klyshko D N, and Shih Y H 1995 Phys. Rev. Lett. 74 3600
[34] Bennink R S, Bentley S J, and Boyd R W 2002 Phys. Rev. Lett. 89 113601
[35] Zhao S M, Ding J, Dong X L, and Zheng B Y 2011 Chin. Phys. Lett. 28 124207
[36] Gatti A, Brambilla E, Bache M, and Lugiato L A 2004 Phys. Rev. Lett. 93 093602
[37] Malik M, Shin H, O'Sullivan M, Zerom P, and Boyd R W 2010 Phys. Rev. Lett. 104 163602
[38] Zia D, Dehghan N, D'Errico A, Sciarrino F, and Karimi E 2023 Nat. Photonics 17 1009
[39] Cameron P, Courme B, Vernière C, Pandya R, Faccio D, and Defienne H 2024 Science 383 1142
[40] Mair A, Vaziri A, Weihs G, and Zeilinger A 2001 Nature 412 313
[41] Kovlakov E V, Bobrov I B, Straupe S S, and Kulik S P 2017 Phys. Rev. Lett. 118 030503
[42] Defienne H, Reichert M, and Fleischer J W 2018 Phys. Rev. Lett. 121 233601
[43] Erhard M, Krenn M, and Zeilinger A 2020 Nat. Rev. Phys. 2 365
[44] Forbes A, de Oliveira M, and Dennis M R 2021 Nat. Photonics 15 253
[45] Gao X, Zhang Y, D'Errico A, Sit A, Heshami K, and Karimi E 2024 Phys. Rev. Lett. 132 063802
[46] Dada A C, Leach J, Buller G S, Padgett M J, and Andersson E 2011 Nat. Phys. 7 677
[47] Zhang Y, Roux F S, Konrad T, Agnew M, Leach J, and Forbes A 2016 Sci. Adv. 2 e1501165
[48] Hiesmayr B C, de Dood M J A, and Löffler W 2016 Phys. Rev. Lett. 116 073601
[49] Malik M, Erhard M, Huber M, Krenn M, Fickler R, and Zeilinger A 2016 Nat. Photonics 10 248
[50] Zhang Y, Agnew M, Roger T, Roux F S, Konrad T, Faccio D, Leach J, and Forbes A 2017 Nat. Commun. 8 632
[51] Erhard M, Malik M, Krenn M, and Zeilinger A 2018 Nat. Photonics 12 759
[52] Fickler R, Lapkiewicz R, Plick W N, Krenn M, Schaeff C, Ramelow S, and Zeilinger A 2012 Science 338 640
[53] Hiekkamäki M, Bouchard F, and Fickler R 2021 Phys. Rev. Lett. 127 263601
[54] Barreiro J T, Langford N K, Peters N A, and Kwiat P G 2005 Phys. Rev. Lett. 95 260501
[55] Kong L J, Liu R, Qi W R, Wang Z X, Huang S Y, Tu C H, Li Y N, and Wang H T 2020 Chin. Phys. Lett. 37 034204
[56] Zhao T M, Ihn Y S, and Kim Y H 2019 Phys. Rev. Lett. 122 123607
[57] Barreiro J T, Wei T C, and Kwiat P G 2008 Nat. Phys. 4 282
[58] Li Y, Huang S Y, Wang M, Tu C H, Wang X L, Li Y N, and Wang H T 2023 Phys. Rev. Lett. 130 050805
[59] D'Ambrosio V, Nagali E, Walborn S P, Aolita L, Slussarenko S, Marrucci L, and Sciarrino F 2012 Nat. Commun. 3 961
[60] Zhao S M, Gong L Y, Li Y Q, Yang H, Sheng Y B, and Cheng W W 2013 Chin. Phys. Lett. 30 060305
[61] Graham T M, Barreiro J T, Mohseni M, and Kwiat P G 2013 Phys. Rev. Lett. 110 060404
[62] Wang X L, Cai X D, Su Z E, Chen M C, Wu D, Li L, Liu N L, Lu C Y, and Pan J W 2015 Nature 518 516
[63] Liu Z F, Chen C, Xu J M, Cheng Z M, Ren Z C, Dong B W, Lou Y C, Yang Y X, Xue S T, Liu Z H, Zhu W Z, Wang X L, and Wang H T 2022 Phys. Rev. Lett. 129 263602
[64] Mirhosseini M, Magaña-Loaiza O S, Chen C C, Hashemi Rafsanjani S M, and Boyd R W 2016 Phys. Rev. Lett. 116 130402
[65] Yang L P and Xu D 2022 Phys. Rev. A 105 023723
[66] Cui D Z, Wang X L, Yi X X, and Yang L P 2024 Phys. Rev. Appl. 21 024019
[67] Wang X L, Chen L K, Li W, Huang H L, Liu C, Chen C, Luo Y H, Su Z E, Wu D, Li Z D, Lu H, Hu Y, Jiang X, Peng C Z, Li L, Liu N L, Chen Y A, Lu C Y, and Pan J W 2016 Phys. Rev. Lett. 117 210502
[68] Walborn S P, Monken C H, Pádua S, and Souto Ribeiro P H 2010 Phys. Rep. 495 87
[69] Moreau P A, Toninelli E, Gregory T, Aspden R S, Morris P A, and Padgett M J 2019 Sci. Adv. 5 eaaw2563
[70] Defienne H, Ndagano B, Lyons A, and Faccio D 2021 Nat. Phys. 17 591
[71] Zhong H S, Wang H, Deng Y H, Chen M C, Peng L C, Luo Y H, Qin J, Wu D, Ding X, Hu Y, Hu P, Yang X Y, Zhang W J, Li H, Li Y X, Jiang X, Gan L, Yang G W, You L X, Wang Z, Li L, Liu N L, Lu C Y, and Pan J W 2020 Science 370 1460
[72] Cui D, Yi X, and Yang L P 2023 Adv. Quantum Technol. 6 2370053
[73] Edgar M P, Tasca D S, Izdebski F, Warburton R E, Leach J, Agnew M, Buller G S, Boyd R W, and Padgett M J 2012 Nat. Commun. 3 984
[74] Defienne H, Reichert M, and Fleischer J W 2018 Phys. Rev. Lett. 120 203604
[75] Moreau P A, Toninelli E, Gregory T, and Padgett M J 2019 Nat. Rev. Phys. 1 367
[76] Defienne H, Zhao J, Charbon E, and Faccio D 2021 Phys. Rev. A 103 042608
[77] Chrapkiewicz R, Jachura M, Banaszek K, and Wasilewski W 2016 Nat. Photonics 10 576
[78] Tenne R, Rossman U, Rephael B, Israel Y, Krupinski-Ptaszek A, Lapkiewicz R, Silberberg Y, and Oron D 2019 Nat. Photonics 13 116
[79] Varnavski O and Goodson T 2020 J. Am. Chem. Soc. 142 12966
[80] Lubin G, Oron D, Rossman U, Tenne R, and Yallapragada V J 2022 ACS Photonics 9 2891
[81] Ndagano B, Defienne H, Branford D, Shah Y D, Lyons A, Westerberg N, Gauger E M, and Faccio D 2022 Nat. Photonics 16 384
Related articles from Frontiers Journals
[1] Xin Su, Biao-Bing Jin, Jiang-Shan Tang, and Keyu Xia. Nonreciprocal Photon Blockade Based on Zeeman Splittings Induced by a Fictitious Magnetic Field[J]. Chin. Phys. Lett., 2024, 41(7): 074205
[2] Waner Hou, Hao Tang, Qin Xu, and Yiheng Lin. Experimental Proposal on Non-Hermitian Skin Effect by Two-dimensional Quantum Walk with a Single Trapped Ion[J]. Chin. Phys. Lett., 2024, 41(4): 074205
[3] Kai-Wei Huang, Xin Wang, Qing-Yang Qiu, Long Wu, and Hao Xiong. Nonreciprocal Phonon Laser in an Asymmetric Cavity with an Atomic Ensemble[J]. Chin. Phys. Lett., 2023, 40(10): 074205
[4] Lei Xu, Ling-Xiao Wang, Guang-Jie Chen, Liang Chen, Yuan-Hao Yang, Xin-Biao Xu, Aiping Liu, Chuan-Feng Li, Guang-Can Guo, Chang-Ling Zou, and Guo-Yong Xiang. Transporting Cold Atoms towards a GaN-on-Sapphire Chip via an Optical Conveyor Belt[J]. Chin. Phys. Lett., 2023, 40(9): 074205
[5] Jian-Yin Huang, Peng-Jun Liang, Liang Zheng, Pei-Yun Li, You-Zhi Ma, Duan-Chen Liu, Jing-Hui Xie, Zong-Quan Zhou, Chuan-Feng Li, and Guang-Can Guo. Stark Tuning of Telecom Single-Photon Emitters Based on a Single Er$^{3+}$[J]. Chin. Phys. Lett., 2023, 40(7): 074205
[6] Ze-Huan Chen, Fei-Yu Wang, Hua Chen, Jin-Cheng Lu, and Chen Wang. Modulation of Steady-State Heat Transport in a Dissipative Multi-Mode Qubit-Photon System[J]. Chin. Phys. Lett., 2023, 40(5): 074205
[7] Zhaoyang Peng, Huayu Hu, Zengxiu Zhao, and Jianmin Yuan. Quantum Optical Description of Radiation by a Two-Level System in Strong Laser Fields[J]. Chin. Phys. Lett., 2023, 40(5): 074205
[8] Ya-Jing Jiang, Xing-Dong Zhao, Shi-Qiang Xia, Chun-Jie Yang, Wu-Ming Liu, and Zun-Lue Zhu. Nonlinear Optomechanically Induced Transparency in a Spinning Kerr Resonator[J]. Chin. Phys. Lett., 2022, 39(12): 074205
[9] M.-L. Cai, Z.-D. Liu, Y. Jiang, Y.-K. Wu, Q.-X. Mei, W.-D. Zhao, L. He, X. Zhang, Z.-C. Zhou, and L.-M. Duan. Probing a Dissipative Phase Transition with a Trapped Ion through Reservoir Engineering[J]. Chin. Phys. Lett., 2022, 39(2): 074205
[10] Shaoxing Liu, Xuanying Lai, Ce Yang, and J. F. Chen. Towards High-Dimensional Entanglement in Path: Photon-Source Produced from a Two-Dimensional Atomic Cloud[J]. Chin. Phys. Lett., 2021, 38(8): 074205
[11] Rui Zhang, Yuan-Chuan Biao, Wen-Long You, Xiao-Guang Wang, Yu-Yu Zhang, and Zi-Xiang Hu. Generalized Rashba Coupling Approximation to a Resonant Spin Hall Effect of the Spin–Orbit Coupling System in a Magnetic Field[J]. Chin. Phys. Lett., 2021, 38(7): 074205
[12] Chen-Rui Zhang, Meng-Jun Hu, Guo-Yong Xiang, Yong-Sheng Zhang, Chuan-Feng Li, and Guang-Can Guo. Direct Strong Measurement of a High-Dimensional Quantum State[J]. Chin. Phys. Lett., 2020, 37(8): 074205
[13] Liwei Duan, Yan-Zhi Wang, and Qing-Hu Chen. $\mathcal{PT}$ Symmetry of a Square-Wave Modulated Two-Level System[J]. Chin. Phys. Lett., 2020, 37(8): 074205
[14] Zhiqiang Ren , Rong Wen , and J. F. Chen. Photon Coalescence in a Lossy Non-Hermitian Beam Splitter[J]. Chin. Phys. Lett., 2020, 37(8): 074205
[15] Wen-Ya Song, Fu-Lin Zhang. Dynamical Algebras in the 1+1 Dirac Oscillator and the Jaynes–Cummings Model[J]. Chin. Phys. Lett., 2020, 37(5): 074205
Viewed
Full text


Abstract