Chin. Phys. Lett.  2024, Vol. 41 Issue (7): 074203    DOI: 10.1088/0256-307X/41/7/074203
FUNDAMENTAL AREAS OF PHENOMENOLOGY(INCLUDING APPLICATIONS) |
Nonlinear Multimodal Interference as Ultrafast Photonic Device for Dual-Wavelength Domain-Wall Dark Pulse Generation
Shan Wang, Bo-Le Song, Xin-He Dou, Fei-Hong Qiao, Xiang Li, Jin-Bo Wang, and Zhi-Guo Lv*
School of Physical Science and Technology, Key Laboratory of Semiconductor Photovoltaic Technology of Inner Mongolia Autonomous Region, Inner Mongolia University, Hohhot 010021, China
Cite this article:   
Shan Wang, Bo-Le Song, Xin-He Dou et al  2024 Chin. Phys. Lett. 41 074203
Download: PDF(837KB)   PDF(mobile)(845KB)   HTML
Export: BibTeX | EndNote | Reference Manager | ProCite | RefWorks
Abstract In comparison to bright pulses, better stability that is not susceptible to loss makes dark pulses accessible for applications in such fields as signal processing, optics sensing, and quantum communication. Here we investigate the dual-wavelength domain-wall dark pulse generation in a graded-index multimode fiber (GIMF) based anomalous dispersion single-mode fiber (SMF) laser. By optimizing intra-cavity nonlinearity and pulse polarization, the mode-locked states can evolve each other between bright pulses, dark pulses, and bright-dark pulse pairs. The evolution mechanism among them may be relevant to the coherent mode superposition, spectral filtering, and mode selection in SMF-GIMF-SMF hybrid-fiber modulation devices that affect the pulse formation and evolution in temporal, frequency, and space domains. These results provide a valuable reference for promoting further development of nonlinear optics and ultrafast optics, in which ultrafast photonic devices, with low cost, simple manufacture as well as wide adaptability, as novel pulsed generation technique, play a vital role.
Received: 05 April 2024      Published: 18 July 2024
PACS:  42.55.Wd (Fiber lasers)  
  42.65.-k (Nonlinear optics)  
  42.65.Tg (Optical solitons; nonlinear guided waves)  
TRENDMD:   
URL:  
https://cpl.iphy.ac.cn/10.1088/0256-307X/41/7/074203       OR      https://cpl.iphy.ac.cn/Y2024/V41/I7/074203
Service
E-mail this article
E-mail Alert
RSS
Articles by authors
Shan Wang
Bo-Le Song
Xin-He Dou
Fei-Hong Qiao
Xiang Li
Jin-Bo Wang
and Zhi-Guo Lv
[1] Liu Z, Wright L G, Christodoulides D N, and Wise F W 2016 Opt. Lett. 41 3675
[2] Krupa K, Garmendia Castañeda G, Tonello A, Niang A, Kharenko D S, Fabert M, Couderc V, Millot G, Minoni U, Modotto D, and Wabnitz S 2019 Opt. Lett. 44 171
[3] Krupa K, Louot C, Couderc V, Fabert M, Guenard R, Shalaby B M, Tonello A, Pagnoux D, Leproux P, Bendahmane A, Dupiol R, Millot G, and Wabnitz S 2016 Opt. Lett. 41 5785
[4] Wright L G, Christodoulides D N, and Wise F W 2017 Science 358 94
[5] Nazemosadat E and Mafi A 2013 J. Opt. Soc. Am. B 30 1357
[6] Nazemosadat E and Mafi A 2013 Opt. Express 21 30739
[7] Wang S, Lv Z, and Qiu J 2023 Nanomaterials 13 535
[8] Wang H Y, Xiao Y J, Liu Q, Xing X W, Yang H J, and Liu W J 2023 Chin. Phys. Lett. 40 114204
[9] Dong Z, Li S, Chen R, Li H, Gu C, Yao P, and Xu L 2019 Opt. Laser Technol. 119 105576
[10] Wang Z K, Wang D N, Yang F, Li L J, Zhao C L, Xu B, Jin S Z, Cao S Y, and Fang Z J 2017 J. Lightwave Technol. 35 5280
[11] Li X H, Huang X Z, Han Y H et al. 2023 Ultrafast Sci. 3 0006
[12] Xiao Y J, Xing X W, Cui W W, Chen Y Q, Zhou Q, and Liu W J 2023 Chin. Phys. Lett. 40 054201
[13] Li X, Huang X, Hu X, Guo X, and Han Y 2023 Opt. Laser Technol. 158 108898
[14] Jiang H, Li H, Hu F, Ren X, Li C, and Xu S 2020 IEEE Photonics Technol. Lett. 32 503
[15] Fabert M, Săpânțan M, Krupa K, Tonello A, Leventoux Y, Février S, Mansuryan T, Niang A, Wetzel B, Millot G, Wabnitz S, and Couderc V 2020 Sci. Rep. 10 20481
[16] Mafi A, Hofmann P, Salvin C J, and Schülzgen A 2011 Opt. Lett. 36 3596
[17] Antonio-Lopez J E, Castillo-Guzman A, May-Arrioja D A, Selvas-Aguilar R, and LiKamWa P 2010 Opt. Lett. 35 324
[18] Dong Z, Lin J, Li H, Li S, Tao R, Gu C, Yao P, and Xu L 2019 Opt. Express 27 27610
[19] Cui W W, Xing X W, Chen Y Q, Xiao Y J, Ye H, and Liu W J 2023 Chin. Phys. Lett. 40 024201
[20] Lv Z, Yang Z, Song D, Li F, Yang Y, Yang X, Wang Y, Li Q, and Zhao W 2019 Opt. Laser Technol. 119 105626
[21] Zhang X, Yi H, Yao Y, Wang S, and Shi L 2023 Chin. Phys. Lett. 40 124204
[22] Lv Z, Yang Z, Song D, Li F, Yang X, Yang Y, Wang Y, Li Q, and Zhao W 2019 Appl. Phys. Express 12 022004
[23] Meng X C, Li L, Sun N Z, Xue Z, Liu Q, Ye H, and Liu W J 2023 Chin. Phys. Lett. 40 124202
[24] Tang D, Guo J, Song Y, Zhang H, Zhao L, and Shen D 2014 Opt. Express 22 19831
[25] Radhakrishnan R and Aravinthan K 2007 J. Phys. A 40 13023
[26] Ning Q Y, Wang S K, Luo A P, Lin Z B, Luo Z C, and Xu W C 2012 IEEE Photonics J. 4 1647
[27] Li X, Zhang S, Meng Y, and Hao Y 2013 Opt. Express 21 8409
[28] Krökel D, Halas N J, Giuliani G, and Grischkowsky D 1988 Phys. Rev. Lett. 60 29
[29] Baronio F, Frisquet B, Chen S, Millot G, Wabnitz S, and Kibler B 2018 Phys. Rev. A 97 013852
[30] Zhang W, Zhan L, Xian T, and Gao L 2019 Opt. Lett. 44 4008
[31] Du Y, Han M, and Shu X 2020 Opt. Lett. 45 666
[32] Shen J, Huang X, Jiang S, Jiang R, Wang H, Lu P, Xu S, and Jiao M 2022 Chin. Phys. Lett. 39 104201
[33] Song Y, Shi X, Wu C, Tang D, and Zhang H 2019 Appl. Phys. Rev. 6 021313
[34] Tang D Y, Li L, Song Y F, Zhao L M, Zhang H, and Shen D Y 2013 Phys. Rev. A 88 013849
[35] Tiu Z C, Suthaskumar M, Zarei A, Tan S J, Ahmad H, and Harun S W 2015 Opt. Laser Technol. 73 127
[36] Zhang H, Tang D Y, Zhao L M, and Knize R J 2010 Opt. Express 18 4428
[37] Zhang H, Tang D, Zhao L, and Wu X 2011 Opt. Express 19 3525
[38] Wang P, Zhao K, Xiao X, and Yang C 2017 Opt. Express 25 30708
[39] Gao J, Hu F M, Huo X D, and Gao P 2014 Laser Phys. 24 085104
[40] Zhao R, Li G, Zhang B, and He J 2018 Opt. Express 26 5819
[41] Huang K W, Wang X, Qiu Q Y, Wu L, and Xiong H 2023 Chin. Phys. Lett. 40 104201
[42] Zhang W Y, Zhan L, Xian T H, and Gao L R 2019 J. Lightwave Technol. 37 3756
[43] Lang Y, Peng Z, and Zhao Z 2022 Chin. Phys. Lett. 39 114201
[44] Li H, Wang Z, Li C, Tian Y, Xiao Z, Zhang J, and Xu S 2019 Opt. Laser Technol. 113 317
[45] Li H, Wang Z, Li C, Zhang J, and Xu S 2017 Opt. Express 25 26546
[46] Li X, Huang X, Chen E, Zhou Y, and Han Y 2022 Opt. Laser Technol. 156 108592
[47] Chang S, Wang Z K, Wang D N, Wu W D, and Gao F 2021 Opt. Commun. 483 126612
[48] Pan W, Jin L, Wang J Z, Wang R Y, Zhang H, Yingtian X, Zhao X, Li Y, and Ma X H 2021 Appl. Opt. 60 923
[49] Yang S, Zhang Q Y, Zhu Z W, Qi Y Y, Yin P, Ge Y Q, Li L, Jin L, Zhang L, and Zhang H 2022 Opt. Laser Technol. 152 108116
Related articles from Frontiers Journals
[1] Zi-Peng Xu, Xuan Wang, Chuan-Fei Yao, Lin-Jing Yang, and Ping-Xue Li. High-Power Raman Soliton Generation at 1.7 μm in All-Fiber Polarization-Maintaining Erbium-Doped Amplifier[J]. Chin. Phys. Lett., 2024, 41(5): 074203
[2] Hui-ran Yang, Meng-ting Qi, Xu-peng Li, Ze Xue, Chen-hao Lu, Jia-wei Cheng, Dong-dong Han, and Lu Li. Optical Nonlinearity of Violet Phosphorus and Applications in Fiber Lasers[J]. Chin. Phys. Lett., 2024, 41(1): 074203
[3] Xiao-Chuan Meng, Lu Li, Nai-Zhang Sun, Ze Xue, Qi Liu, Han Ye, and Wen-Jun Liu. Ultrafast Fiber Laser Based on Tungsten Sulphoselenide Materials[J]. Chin. Phys. Lett., 2023, 40(12): 074203
[4] Haoyu Wang, Yue-Jia Xiao, Qi Liu, Xiao-Wei Xing, Hu-Jiang Yang, and Wen-Jun Liu. Preparation of Bi$_{2}$Te$_{3}$ Based on Saturable Absorption System and Its Application in Fiber Lasers[J]. Chin. Phys. Lett., 2023, 40(11): 074203
[5] Yue-Jia Xiao, Xiao-Wei Xing, Wen-Wen Cui, Yue-Qian Chen, Qin Zhou, and Wen-Jun Liu. Femtosecond Fiber Laser Based on BiSbTeSe$_{2}$ Quaternary Material Saturable Absorber[J]. Chin. Phys. Lett., 2023, 40(5): 074203
[6] Wen-Wen Cui, Xiao-Wei Xing, Yue-Qian Chen, Yue-Jia Xiao, Han Ye, and Wen-Jun Liu. Tunable Dual-Wavelength Fiber Laser in a Novel High Entropy van der Waals Material[J]. Chin. Phys. Lett., 2023, 40(2): 074203
[7] Ming-Xiao Wang, Ping-Xue Li, Yang-Tao Xu, Yun-Chen Zhu, Shun Li, and Chuan-Fei Yao. An All-Fiberized Chirped Pulse Amplification System Based on Chirped Fiber Bragg Grating Stretcher and Compressor[J]. Chin. Phys. Lett., 2022, 39(2): 074203
[8] Yuan-Yuan Yan  and Wen-Jun Liu. Soliton Rectangular Pulses and Bound States in a Dissipative System Modeled by the Variable-Coefficients Complex Cubic-Quintic Ginzburg–Landau Equation[J]. Chin. Phys. Lett., 2021, 38(9): 074203
[9] Kai Ning, Lei Hou, Song-Tao Fan, Lu-Lu Yan, Yan-Yan Zhang, Bing-Jie Rao, Xiao-Fei Zhang, Shou-Gang Zhang, Hai-Feng Jiang. An All-Polarization-Maintaining Multi-Branch Optical Frequency Comb for Highly Sensitive Cavity Ring-Down Spectroscopy *[J]. Chin. Phys. Lett., 0, (): 074203
[10] Kai Ning, Lei Hou, Song-Tao Fan, Lu-Lu Yan, Yan-Yan Zhang, Bing-Jie Rao, Xiao-Fei Zhang, Shou-Gang Zhang, Hai-Feng Jiang. An All-Polarization-Maintaining Multi-Branch Optical Frequency Comb for Highly Sensitive Cavity Ring-Down Spectroscopy[J]. Chin. Phys. Lett., 2020, 37(6): 074203
[11] H. Ahmad, M. F. Ismail, S. N. Aidit. Optically Modulated Tunable O-Band Praseodymium-Doped Fluoride Fiber Laser Utilizing Multi-Walled Carbon Nanotube Saturable Absorber[J]. Chin. Phys. Lett., 2019, 36(10): 074203
[12] N. F. Zulkipli, M. Batumalay, F. S. M. Samsamnun, M. B. H. Mahyuddin, E. Hanafi, T. F. T. M. N. Izam, M. I. M. A. Khudus, S. W. Harun. Nanosecond Pulses Generation with Samarium Oxide Film Saturable Absorber[J]. Chin. Phys. Lett., 2019, 36(7): 074203
[13] R. Z. R. R. Rosdin, M. T. Ahmad, A. R. Muhammad, Z. Jusoh, H. Arof, S. W. Harun. Nanosecond Pulse Generation with Silver Nanoparticle Saturable Absorber[J]. Chin. Phys. Lett., 2019, 36(5): 074203
[14] Lu Li, Rui-Dong Lv, Si-Cong Liu, Zhen-Dong Chen, Jiang Wang, Yong-Gang Wang, Wei Ren. Using Reduced Graphene Oxide to Generate Q-Switched Pulses in Er-Doped Fiber Laser[J]. Chin. Phys. Lett., 2018, 35(11): 074203
[15] Gen Li, Yong Zhou, Shu-Jie Li, PeiJun Yao, Wei-qing Gao, Chun Gu, Li-Xin Xu. Synchronously Pumped Mode-Locked 1.89μm Tm-Doped Fiber Laser with High Detuning Toleration[J]. Chin. Phys. Lett., 2018, 35(11): 074203
Viewed
Full text


Abstract