Chin. Phys. Lett.  2024, Vol. 41 Issue (7): 074204    DOI: 10.1088/0256-307X/41/7/074204
FUNDAMENTAL AREAS OF PHENOMENOLOGY(INCLUDING APPLICATIONS) |
Higher-Order Nonlinear Effects on Optical Soliton Propagation and Their Interactions
Houhui Yi1, Xiaofeng Li1, Junling Zhang1, Xin Zhang1*, and Guoli Ma2*
1School of Intelligent Manufacturing, Weifang University of Science and Technology, Weifang 262700, China
2Tianjin Sino-German University of Applied Sciences, Tianjin 300350, China
Cite this article:   
Houhui Yi, Xiaofeng Li, Junling Zhang et al  2024 Chin. Phys. Lett. 41 074204
Download: PDF(4041KB)   PDF(mobile)(4065KB)   HTML
Export: BibTeX | EndNote | Reference Manager | ProCite | RefWorks
Abstract When pursuing femtosecond-scale ultrashort pulse optical communication, one cannot overlook higher-order nonlinear effects. Based on the fundamental theoretical model of the variable coefficient coupled high-order nonlinear Schrödinger equation, we analytically explore the evolution of optical solitons in the presence of high-order nonlinear effects. Moreover, the interactions between two nearby optical solitons and their transmission in a nonuniform fiber are investigated. The stability of optical soliton transmission and interactions are found to be destroyed to varying degrees due to higher-order nonlinear effects. The outcomes may offer some theoretical references for achieving ultra-high energy optical solitons in the future.
Received: 30 May 2024      Published: 18 July 2024
PACS:  05.45.Yv (Solitons)  
  42.65.Tg (Optical solitons; nonlinear guided waves)  
  42.81.Dp (Propagation, scattering, and losses; solitons)  
TRENDMD:   
URL:  
https://cpl.iphy.ac.cn/10.1088/0256-307X/41/7/074204       OR      https://cpl.iphy.ac.cn/Y2024/V41/I7/074204
Service
E-mail this article
E-mail Alert
RSS
Articles by authors
Houhui Yi
Xiaofeng Li
Junling Zhang
Xin Zhang
and Guoli Ma
[1] Maeda T, Hisano D, Yoshida Y, Maruta A, and Mishina K 2023 J. Lightwave Technol. 41 6691
[2] Sun Y Z, Hu Z H, Triki H, Mirzazadeh M, Liu W J, Biswas A, and Zhou Q 2023 Nonlinear Dyn. 111 18391
[3] Fu C S, Cheng C H, Hsieh C H, Wang H Y, Tsai C T, Chi Y C, and Lin G R 2023 ACS Photonics 10 2650
[4] Zhao Z H, Xin H Y, and Liu T 2020 Microwave Opt. Technol. Lett. 62 1471
[5] Sang X Z, Chu P L, and Yu C X 2005 Opt. Quantum Electron. 37 965
[6] Lee E H, Kim K H, and Lee H K 2002 Opt. Quantum Electron. 34 1167
[7] Mecozzi A, Clausen C B, and Shtaif M 2000 IEEE Photonics Technol. Lett. 12 392
[8] Nasreen N, Lu D, Younas U, Seadawy A R, and Iqbal M 2024 Opt. Quantum Electron. 56 852
[9] Liu M W, Wang H T, Yang H J, and Liu W J 2024 Nonlinear Dyn. 112 1327
[10] Yao Y L, Yi H H, Zhang X, and Ma G L 2023 Chin. Phys. Lett. 40 100503
[11] Yi H H, Yao Y L, Zhang X, and Ma G L 2023 Chin. Phys. B 32 100509
[12] Abbagari S, Houwe A, Akinyemi L, Inc M, Doka S Y, and Crépin K T 2022 Opt. Quantum Electron. 54 642
[13] Kaewplung P, Angkaew T, and Kikuchi K 2003 J. Lightwave Technol. 21 1465
[14] Aceves A B, De Angelis C, Nalesso G, and Santagiustina M 1994 Opt. Lett. 19 2104
[15] Sun Y F, Parra-Rivas P, Milián C, Kartashov Y V, Ferraro M, Mangini F, Jauberteau R, Talenti F R, and Wabnitz S 2023 Phys. Rev. Lett. 131 137201
[16] Yang S X, Wang Y F, and Zhang X 2023 Nonlinear Dyn. 111 17439
[17] Jiang H, Cheng E H, Zhou Z Y, and Lang L J 2023 Chin. Phys. B 32 084203
[18] Grigorova T, Brahms C, Belli F, and Travers J C 2023 Phys. Rev. A 107 063512
[19] Chowdury A, Chang W, and Battiato M 2023 Phys. Rev. A 107 053507
[20] Ao S M and Yan J R 2006 Chin. Phys. Lett. 23 2774
[21] Wang F J and Tang Y 2003 Chin. Phys. Lett. 20 1770
[22] Nakkeeran K 2000 Phys. Lett. A 275 415
[23] Park Q H and Shin H J 2000 Opt. Commun. 178 233
[24] Zhang X, Yi H H, Yao Y L, Wang S B, and Shi L X 2023 Chin. Phys. Lett. 40 124204
[25] Zhang X Y and Wu Y 2023 Chin. Phys. Lett. 40 080502
[26] Liu X M, Zhang Z Y, and Liu W J 2023 Chin. Phys. Lett. 40 070501
[27] Wang S B, Ma G L, Zhang X, and Zhu D Y 2022 Chin. Phys. Lett. 39 114202
[28] Li Z, Liu M W, Jiang Y, and Liu W J 2024 Nonlinear Dyn. 112 8495
[29] Wang H T, Zhou Q, Yang H J, Meng X K, Tian Y, and Liu W J 2023 Proc. R. Soc. A 479 20230601
[30] Liu X Y, Zhang H X, Yan Y Y, and Liu W J 2023 Phys. Lett. A 457 128568
[31] Wang H T, Li X, Zhou Q, and Liu W J 2023 Chaos Solitons & Fractals 166 112924
[32] Yang D Y, Tian B, Shen Y, and Gao X T 2023 Qualitative Theor. Dyn. Syst. 22 59
Related articles from Frontiers Journals
[1] Yu Zhong, Houria Triki, and Qin Zhou. Dynamics of Ring Dark Solitons and the Following Vortices in Spin-1 Bose–Einstein Condensates[J]. Chin. Phys. Lett., 2024, 41(7): 074204
[2] Yong Meng, Ping-Ping Fang, and Ji Lin. Nondegenerate Soliton Solutions of (2+1)-Dimensional Multi-Component Maccari System[J]. Chin. Phys. Lett., 2024, 41(6): 074204
[3] Ling-Juan Yan, Ya-Jie Liu, and Xing-Biao Hu. Some Modified Equations of the Sine-Hilbert Type[J]. Chin. Phys. Lett., 2024, 41(4): 074204
[4] Houhui Yi, Xin Zhang, Lingxian Shi, Yanli Yao, Shubin Wang, and Guoli Ma. Three-Soliton Interactions and the Implementation of Their All-Optical Switching Function[J]. Chin. Phys. Lett., 2024, 41(4): 074204
[5] Zhi-Zeng Si, Chao-Qing Dai, and Wei Liu. Tunable Three-Wavelength Fiber Laser and Transient Switching between Three-Wavelength Soliton and Q-Switched Mode-Locked States[J]. Chin. Phys. Lett., 2024, 41(2): 074204
[6] Abdul-Majid Wazwaz. New Painlevé Integrable (3+1)-Dimensional Combined pKP–BKP Equation: Lump and Multiple Soliton Solutions[J]. Chin. Phys. Lett., 2023, 40(12): 074204
[7] Xin Zhang, Houhui Yi, Yanli Yao, Shubin Wang, and Lingxian Shi. All-Optical Switches for Optical Soliton Interactions in a Birefringent Fiber[J]. Chin. Phys. Lett., 2023, 40(12): 074204
[8] Yanli Yao, Houhui Yi, Xin Zhang, and Guoli Ma. Effective Control of Three Soliton Interactions for the High-Order Nonlinear Schr?dinger Equation[J]. Chin. Phys. Lett., 2023, 40(10): 074204
[9] Vladimir I. Kruglov and Houria Triki. Interacting Solitons, Periodic Waves and Breather for Modified Korteweg–de Vries Equation[J]. Chin. Phys. Lett., 2023, 40(9): 074204
[10] Si-Yu Zhu, De-Xing Kong, and Sen-Yue Lou. Dark Korteweg–De Vrise System and Its Higher-Dimensional Deformations[J]. Chin. Phys. Lett., 2023, 40(8): 074204
[11] Xinyi Zhang and Ye Wu. Soliton Interactions with Different Dispersion Curve Functions in Heterogeneous Systems[J]. Chin. Phys. Lett., 2023, 40(8): 074204
[12] Xi-Meng Liu, Zhi-Yang Zhang, and Wen-Jun Liu. Physics-Informed Neural Network Method for Predicting Soliton Dynamics Supported by Complex Parity-Time Symmetric Potentials[J]. Chin. Phys. Lett., 2023, 40(7): 074204
[13] Cuicui Ding, Qin Zhou, Siliu Xu, Houria Triki, Mohammad Mirzazadeh, and Wenjun Liu. Nonautonomous Breather and Rogue Wave in Spinor Bose–Einstein Condensates with Space-Time Modulated Potentials[J]. Chin. Phys. Lett., 2023, 40(4): 074204
[14] S. Y. Lou, Man Jia, and Xia-Zhi Hao. Higher Dimensional Camassa–Holm Equations[J]. Chin. Phys. Lett., 2023, 40(2): 074204
[15] Shubin Wang, Guoli Ma, Xin Zhang, and Daiyin Zhu. Dynamic Behavior of Optical Soliton Interactions in Optical Communication Systems[J]. Chin. Phys. Lett., 2022, 39(11): 074204
Viewed
Full text


Abstract