Chin. Phys. Lett.  2024, Vol. 41 Issue (7): 070302    DOI: 10.1088/0256-307X/41/7/070302
GENERAL |
Quantum Voting Machine Encoded with Microwave Photons
Yu Zhang1,2,3*, Chuiping Yang4, Qiping Su4, Yihao Kang4, Wen Zheng1,2,3, Shaoxiong Li1,2,3, and Yang Yu1,2,3,5*
1National Laboratory of Solid State Microstructures, School of Physics, Nanjing University, Nanjing 210093, China
2Shishan Laboratory, Nanjing University, Suzhou 215163, China
3Synergetic Innovation Center of Quantum Information and Quantum Physics, University of Science and Technology of China, Hefei 230026, China
4Department of Physics, Hangzhou Normal University, Hangzhou 310036, China
5Hefei National Laboratory, Hefei 230088, China
Cite this article:   
Yu Zhang, Chuiping Yang, Qiping Su et al  2024 Chin. Phys. Lett. 41 070302
Download: PDF(534KB)   PDF(mobile)(552KB)   HTML
Export: BibTeX | EndNote | Reference Manager | ProCite | RefWorks
Abstract We propose a simple quantum voting machine using microwave photon qubit encoding, based on a setup comprising multiple microwave cavities and a coupled superconducting flux qutrit. This approach primarily relies on a multi-control single-target quantum phase gate. The scheme offers operational simplicity, requiring only a single step, while ensuring verifiability through the measurement of a single qubit phase information to obtain the voting results. It provides voter anonymity, as the voting outcome is solely tied to the total number of affirmative votes. Our quantum voting machine also has scalability in terms of the number of voters. Additionally, the physical realization of the quantum voting machine is general and not limited to circuit quantum electrodynamics. Quantum voting machine can be implemented as long as the multi-control single-phase quantum phase gate is realized in other physical systems. Numerical simulations indicate the feasibility of this quantum voting machine within the current quantum technology.
Received: 07 May 2024      Express Letter Published: 21 June 2024
PACS:  03.67.Lx (Quantum computation architectures and implementations)  
  85.25.Dq (Superconducting quantum interference devices (SQUIDs))  
  42.50.Dv (Quantum state engineering and measurements)  
TRENDMD:   
URL:  
https://cpl.iphy.ac.cn/10.1088/0256-307X/41/7/070302       OR      https://cpl.iphy.ac.cn/Y2024/V41/I7/070302
Service
E-mail this article
E-mail Alert
RSS
Articles by authors
Yu Zhang
Chuiping Yang
Qiping Su
Yihao Kang
Wen Zheng
Shaoxiong Li
and Yang Yu
[1] Li Y R, Jiang D H, Zhang Y H, and Liang X Q 2021 Quantum Inf. Process. 20 110
[2] Xu L and Wang M 2022 Front. Phys. 10 1023992
[3] Jiang D H, Wang J, Liang X Q, Xu G B, and Qi H F 2020 Int. J. Theor. Phys. 59 436
[4] Xue P and Zhang X 2017 Sci. Rep. 7 7586
[5] Shi R H, Qin J Q, Liu B, and Zhang M W 2021 Eur. Phys. J. D 75 20
[6] Yang C P, Chu S I, and Han S 2003 Phys. Rev. A 67 042311
[7] Xiang Z L, Ashhab S, You J Q, and Nori F 2013 Rev. Mod. Phys. 85 623
[8] Li J W, Wu C W, and Dai H Y 2011 Chin. Phys. Lett. 28 090302
[9] Wang Z, Bao Z, Wu Y, Li Y, Ma C, Cai T, Song Y, Zhang H, and Duan L 2021 Chin. Phys. Lett. 38 110303
[10] Place A P M, Rodgers L V, Mundada P, Smitham B M, Fitzpatrick M, Leng Z Q, Premkumar A, Bryon J, Vrajitoarea A, Sussman S et al. 2021 Nat. Commun. 12 1779
[11] Wang C L, Li X G, Xu H K, Li Z Y, Wang J H, Yang Z, Mi Z Y, Liang X H, Su T, Yang C H et al. 2022 npj Quantum Inf. 8 3
[12] Yan F, Gustavsson S, Kamal A, Birenbaum J, Sears A P, Hover D, Gudmundsen T J, Rosenberg D, Samach G, Weber S et al. 2016 Nat. Commun. 7 12964
[13] Somoroff A, Ficheux Q, Mencia R A, Xiong H, Kuzmin R, and Manucharyan V E 2023 Phys. Rev. Lett. 130 267001
[14] Chen W, Bennett D A, Patel V, and Lukens J E 2008 Supercond. Sci. Technol. 21 075013
[15] Leek P J, Baur M, Fink J M, Bianchetti R, Steffen L, Filipp S, and Wallraff A 2010 Phys. Rev. Lett. 104 100504
[16] Megrant A, Neill C, Barends R, Chiaro B, Chen Y, Feigl L, Kelly J, Lucero E, Mariantoni M, O'Malley P J J et al. 2012 Appl. Phys. Lett. 100 113510
[17] Calusine G, Melville A, Woods W, Das R, Stull C, Bolkhovsky V, Braje D, Hover D, Kim D K, Miloshi X et al. 2018 Appl. Phys. Lett. 112 062601
[18] Woods W, Calusine G, Melville A, Sevi A, Golden E, Kim D K, Rosenberg D, Yoder J L, and Oliver W D 2019 Phys. Rev. Appl. 12 014012
[19] Melville A, Calusine G, Woods W, Serniak K, Golden E, Niedzielski B M, Kim D K, Sevi A, Yoder J L, Dauler E A et al. 2020 Appl. Phys. Lett. 117 124004
[20] Reagor M, Pfaff W, Axline C, Heeres R W, Ofek N, Sliwa K, Holland E, Wang C, Blumoff J, Chou K et al. 2016 Phys. Rev. B 94 014506
[21] Kudra M, Biznárová J, Fadavi Roudsari A, Burnett J J, Niepce D, Gasparinetti S, Wickman B, and Delsing P 2020 Appl. Phys. Lett. 117 070601
[22] Romanenko A, Pilipenko R, Zorzetti S, Frolov D, Awida M, Belomestnykh S, Posen S, and Grassellino A 2020 Phys. Rev. Appl. 13 034032
[23] Devoret M H and Schoelkopf R J 2013 Science 339 1169
[24] Zhang G Q, Feng W, Xiong W, Xu D, Su Q P, and Yang C P 2023 Phys. Rev. Appl. 20 044014
[25] Liu T, Zhou Y H, Wu Q C, and Yang C P 2022 Appl. Phys. Lett. 121 244001
[26] Zhang Y, Zhao X, Zheng Z F, Yu L, Su Q P, and Yang C P 2017 Phys. Rev. A 96 052317
[27] Puri S, St-Jean L, Gross J A, Grimm A, Frattini N E, Iyer P S, Krishna A, Touzard S, Jiang L, Blais A et al. 2020 Sci. Adv. 6 eaay5901
[28] Xu Q, Iverson J K, Brandão F G S L, and Jiang L 2022 Phys. Rev. Res. 4 013082
[29] Kang Y H, Chen Y H, Wang X, Song J, Xia Y, Miranowicz A, Zheng S B, and Nori F 2022 Phys. Rev. Res. 4 013233
[30] Chen Y H, Stassi R, Qin W, Miranowicz A, and Nori F 2022 Phys. Rev. Appl. 18 024076
[31] Krasnok A, Dhakal P, Fedorov A, Frigola P, Kelly M, and Kutsaev S 2024 Appl. Phys. Rev. 11 011302
[32] Pietikäinen I, Černotík O, Eickbusch A, Maiti A, Garmon J W, Filip R, and Girvin S M 2024 arXiv:2403.02278 [quant-ph]
[33] Neeley M, Ansmann M, Bialczak R C, Hofheinz M, Katz N, Lucero E, O'Connell A, Wang H, Cleland A N, and Martinis J M 2008 Nat. Phys. 4 523
[34] Sun G, Wen X, Mao B, Chen J, Yu Y, Wu P, and Han S 2010 Nat. Commun. 1 51
[35] Wang Z L, Zhong Y P, He L J, Wang H, Martinis J M, Cleland A N, and Xie Q W 2013 Appl. Phys. Lett. 102 163503
[36] Zheng S B and Guo G C 2000 Phys. Rev. Lett. 85 2392
[37] Sørensen A and Mølmer K 1999 Phys. Rev. Lett. 82 1971
[38] James D F and Jerke J 2007 Can. J. Phys. 85 625
[39] Shalibo Y, Resh R, Fogel O, Shwa D, Bialczak R, Martinis J M, and Katz N 2013 Phys. Rev. Lett. 110 100404
[40] Johansson J R, Nation P D, and Nori F 2012 Comput. Phys. Commun. 183 1760
[41] Liu Y x, You J Q, Wei L F, Sun C P, and Nori F 2005 Phys. Rev. Lett. 95 087001
[42] You J Q, Hu X D, Ashhab S, and Nori F 2007 Phys. Rev. B 75 140515
Related articles from Frontiers Journals
[1] Zhengping Yang, Wei-Ping Zhong, and Milivoj Belić. Dark Localized Waves in Shallow Waters: Analysis within an Extended Boussinesq System[J]. Chin. Phys. Lett., 2024, 41(4): 070302
[2] Zheng-Rong Liu, Rui Chen, and Bin Zhou. Tuning Second Chern Number in a Four-Dimensional Topological Insulator by High-Frequency Time-Periodic Driving[J]. Chin. Phys. Lett., 2024, 41(4): 070302
[3] Dai-Qiang Huang, Yang Wang, He Wang, Jian Wang, and Yang Liu. Magneto-optic Kerr Effect Measurement of TbMn$_{6}$Sn$_{6}$ at mK Temperature[J]. Chin. Phys. Lett., 2024, 41(4): 070302
[4] Yiwen Han and Wei Yi. Tuning Excitation Transport in a Dissipative Rydberg Ring[J]. Chin. Phys. Lett., 2024, 41(3): 070302
[5] Xiao-Yun Wang, Chen Dong, and Xiang Liu. Analysis of Strong Coupling Constant with Machine Learning and Its Application[J]. Chin. Phys. Lett., 2024, 41(3): 070302
[6] Pan-Pan Shi, Vadim Baru, Feng-Kun Guo, Christoph Hanhart, and Alexey Nefediev. Production of the $X(4014)$ as the Spin-2 Partner of $X(3872)$ in $e^+e^-$ Collisions[J]. Chin. Phys. Lett., 2024, 41(3): 070302
[7] Jianzhi Chen, Aoqian Shi, Yuchen Peng, Peng Peng, and Jianjun Liu. Hybrid Skin-Topological Effect Induced by Eight-Site Cells and Arbitrary Adjustment of the Localization of Topological Edge States[J]. Chin. Phys. Lett., 2024, 41(3): 070302
[8] Qi-Hang Yu and Zi-Jing Lin. Solving Quantum Many-Particle Models with Graph Attention Network[J]. Chin. Phys. Lett., 2024, 41(3): 070302
[9] Bo Li, Xu-Tao Zeng, Qianhui Xu, Fan Yang, Junsen Xiang, Hengyang Zhong, Sihao Deng, Lunhua He, Juping Xu, Wen Yin, Xingye Lu, Huiying Liu, Xian-Lei Sheng, and Wentao Jin. C-Type Antiferromagnetic Structure of Topological Semimetal CaMnSb$_2$[J]. Chin. Phys. Lett., 2024, 41(3): 070302
[10] Ke-Fan Wu, Hu Zhang, and Gui-Hua Tang. Experimental Investigation of the Anisotropic Thermal Conductivity of C/SiC Composite Thin Slab[J]. Chin. Phys. Lett., 2024, 41(3): 070302
[11] John Paul Strachan. Unleashing the Power of Moiré Materials in Neuromorphic Computing[J]. Chin. Phys. Lett., 2023, 40(12): 070302
[12] Xiaozhou Pan, Pengtao Song, and Yvonne Y. Gao. Continuous-Variable Quantum Computation in Circuit QED[J]. Chin. Phys. Lett., 2023, 40(11): 070302
[13] Z. T. Wang, Peng Zhao, Z. H. Yang, Ye Tian, H. F. Yu, and S. P. Zhao. Escaping Detrimental Interactions with Microwave-Dressed Transmon Qubits[J]. Chin. Phys. Lett., 2023, 40(7): 070302
[14] Jierong Huo, Zezhou Xia, Zonglin Li, Shan Zhang, Yuqing Wang, Dong Pan, Qichun Liu, Yulong Liu, Zhichuan Wang, Yichun Gao, Jianhua Zhao, Tiefu Li, Jianghua Ying, Runan Shang, and Hao Zhang. Gatemon Qubit Based on a Thin InAs-Al Hybrid Nanowire[J]. Chin. Phys. Lett., 2023, 40(4): 070302
[15] Changhao Zhao, Yongcheng He, Xiao Geng, Kaiyong He, Genting Dai, Jianshe Liu, and Wei Chen. Multi-Mode Bus Coupling Architecture of Superconducting Quantum Processor[J]. Chin. Phys. Lett., 2023, 40(1): 070302
Viewed
Full text


Abstract