Chin. Phys. Lett.  2024, Vol. 41 Issue (7): 070501    DOI: 10.1088/0256-307X/41/7/070501
GENERAL |
Dynamics of Ring Dark Solitons and the Following Vortices in Spin-1 Bose–Einstein Condensates
Yu Zhong1, Houria Triki2, and Qin Zhou1,3*
1Research Group of Nonlinear Optical Science and Technology, Research Center of Nonlinear Science, School of Mathematical and Physical Sciences, Wuhan Textile University, Wuhan 430200, China
2Radiation Physics Laboratory, Department of Physics, Faculty of Sciences, Badji Mokhtar University, P.O. Box 12, 23000 Annaba, Algeria
3State Key Laboratory of New Textile Materials and Advanced Processing Technologies, Wuhan Textile University, Wuhan 430200, China
Cite this article:   
Yu Zhong, Houria Triki, and Qin Zhou 2024 Chin. Phys. Lett. 41 070501
Download: PDF(13966KB)   PDF(mobile)(13987KB)   HTML
Export: BibTeX | EndNote | Reference Manager | ProCite | RefWorks
Abstract This work focuses on the evolution behaviors of ring dark solitons (RDSs) and the following vortices after the collapses of RDSs in spin-1 Bose–Einstein condensates. We find that the weighted average of the initial depths of three components determines the number and motion trajectories of vortex dipoles. For the weighted average of the initial depths below the critical depth, two vortex dipoles form and start moving along the horizontal axis. For the weighted average depth above the critical depth, two or four vortex dipoles form, and all start moving along the vertical axis. For the RDS with weighted average depth at exactly the critical point, four vortex dipoles form, half of the vortex dipoles initiate movement vertically, and the other half initiate movement horizontally. Our conclusion is applicable to the two-component system studied in earlier research, indicating its universality.
Received: 24 May 2024      Editors' Suggestion Published: 24 July 2024
PACS:  05.45.Yv (Solitons)  
TRENDMD:   
URL:  
https://cpl.iphy.ac.cn/10.1088/0256-307X/41/7/070501       OR      https://cpl.iphy.ac.cn/Y2024/V41/I7/070501
Service
E-mail this article
E-mail Alert
RSS
Articles by authors
Yu Zhong
Houria Triki
and Qin Zhou
[1] Zhai H 2021 Ultracold Atomic Physics (Cambridge: Cambridge University Press) p 74
[2] Anderson M H, Ensher J R, Matthews M R, Wieman C E, and Cornell E A 1995 Science 269 198
[3] Davis K B, Mewes M O, Andrews M R, van Druten N J, Durfee D S, Kurn D M, and Ketterle W 1995 Phys. Rev. Lett. 75 3969
[4] Stenger J, Inouye S, Stamper-Kurn D M, Miesner H J, Chikkatur A P, and Ketterle W 1998 Nature 396 345
[5] Widera A, Gerbier F, Fölling S, Gericke T, Mandel O, and Bloch I 2006 New J. Phys. 8 152
[6] Griesmaier A, Werner J, Hensler S, Stuhler J, and Pfau T 2005 Phys. Rev. Lett. 94 160401
[7] Ho T L 1998 Phys. Rev. Lett. 81 742
[8] Koashi M and Ueda M 2000 Phys. Rev. Lett. 84 1066
[9] Diener R B and Ho T L 2006 Phys. Rev. Lett. 96 190405
[10] Tian T, Cai Y, Wu X, and Wen Z 2020 SIAM J. Sci. Comput. 42 B983
[11] Lannig S, Schmied C M, Prüfer M, Kunkel P, Strohmaier R, Strobel H, Gasenzer T, Kevrekidis P G, and Oberthaler M K 2020 Phys. Rev. Lett. 125 170401
[12] Yao K X, Zhang Z, and Chin C 2022 Nature 602 68
[13] Gautam S and Adhikari S K 2019 J. Phys. B 52 055302
[14] Cabrera C R, Tanzi L, Sanz J, Naylor B, Thomas P, Cheiney P, and Tarruell L 2018 Science 359 301
[15] Kevrekidis P G, Frantzeskakis D J, and Carretero-González R 2008 Emergent Nonlinear Phenomena in Bose–Einstein Condensates: Theory and Experiment (Berlin: Springer-Verlag)
[16] Carretero-González R, Frantzeskakis D J, and Kevrekidis P G 2008 Nonlinearity 21 R139
[17] He J T, Fang P P, and Lin J 2022 Chin. Phys. Lett. 39 020301
[18] Chen Y X 2023 Nonlinear Dyn. 111 11437
[19] Cornish S L, Thompson S T, and Wieman C E 2006 Phys. Rev. Lett. 96 170401
[20] Frantzeskakis D J 2010 J. Phys. A 43 213001
[21] Fetter A L 2009 Rev. Mod. Phys. 81 647
[22] Komineas S 2007 Eur. Phys. J. Spec. Top. 147 133
[23] Dreischuh A, Neshev D N, Petersen D E, Bang O L, and Krolikowski W 2006 Phys. Rev. Lett. 96 043901
[24] Burger S, Bongs K, Dettmer S, Ertmer W, Sengstock K, Sanpera A, Shlyapnikov G V, and Lewenstein M 1999 Phys. Rev. Lett. 83 5198
[25] Denschlag J, Simsarian J E, Feder D L, Clark C W, Collins L A, Cubizolles J, Deng L, Hagley E W, Helmerson K, Reinhardt W P, Rolston S L, Schneider B I, and Phillips W D 2000 Science 287 97
[26] Proukakis N P, Parker N G, Frantzeskakis D J, and Adams C S 2004 J. Opt. B 6 S380
[27] Kivshar Y S and Yang X P 1994 Phys. Rev. E 50 R40
[28] Dreischuh A, Neshev D, Paulus G G, Grasbon F, and Walther H 2002 Phys. Rev. E 66 066611
[29] Kartashov Y V, Vysloukh V A, and Torner L 2005 Phys. Rev. Lett. 94 043902
[30] Baluschev S, Dreischuh A, Velchev I, Dinev S, and Marazov O 1995 Phys. Rev. E 52 5517
[31] Baluschev S, Dreischuh A, Velchev I, Dinev S, and Marazov O 1995 Appl. Phys. B 61 121
[32] Dreischuh A, Fließer W, Velchev I, Dinev S, and Windholz L 1996 Appl. Phys. B 62 139
[33] Theocharis G, Frantzeskakis D J, Kevrekidis P G, Malomed B A, and Kivshar Y S 2003 Phys. Rev. Lett. 90 120403
[34] Yang S J, Wu Q S, Zhang S N, Feng S, Guo W, Wen Y C, and Yu Y 2007 Phys. Rev. A 76 063606
[35] Hu X H, Zhang X F, Zhao D, Luo H G, and Liu W M 2009 Phys. Rev. A 79 023619
[36] Toikka L A and Suominen K A 2013 Phys. Rev. A 87 043601
[37] Wang W, Kevrekidis P G, and Babaev E 2019 Phys. Rev. A 100 053621
[38] Li J, Lu P H, Jiang J H, and Dai C Q 2023 Chaos Solitons & Fractals 173 113597
[39] Yang G, Xie S, Zhao Y, Jin J, and Zhang S 2023 Physica A 609 128398
[40] Qiu W X, Si Z Z, Mou D S, Dai C Q, Li J T, and Liu W 2024 Nonlinear Dyn.
[41] Zou Z and Guo R 2023 Commun. Nonlinear Sci. & Numer. Simul. 124 107316
[42] Niu J X and Guo R 2023 Appl. Math. Lett. 140 108568
[43] Wang L X, Dai C Q, Wen L, Liu T, Jiang H F, Saito H, Zhang S G, and Zhang X F 2018 Phys. Rev. A 97 063607
[44] He Z M, Wen L, Wang Y J, Chen G P, Tan R B, Dai C Q, and Zhang X F 2019 Phys. Rev. E 99 062216
[45] Lu P H, Zhang X F, and Dai C Q 2022 Front. Phys. 17 42501
[46] Song S W, Wang D S, Wang H, and Liu W M 2012 Phys. Rev. A 85 063617
[47] Ding C C, Zhou Q, Xu S L, Sun Y Z, Liu W J, Mihalache D, and Malomed B A 2023 Chaos Solitons & Fractals 169 113247
[48] Li N, Chen Q, Triki H, Liu F, Sun Y, Xu S, and Zhou Q 2024 Ukr. J. Phys. Opt. 25 S1060
[49] Eto M, Kasamatsu K, Nitta M, Takeuchi H, and Tsubota M 2011 Phys. Rev. A 83 063603
[50] Kaneda T and Saito H 2014 Phys. Rev. A 90 053632
[51] Seo S W, Kang S, Kwon W J, and Shin Y I 2015 Phys. Rev. Lett. 115 015301
Related articles from Frontiers Journals
[1] Houhui Yi, Xiaofeng Li, Junling Zhang, Xin Zhang, and Guoli Ma. Higher-Order Nonlinear Effects on Optical Soliton Propagation and Their Interactions[J]. Chin. Phys. Lett., 2024, 41(7): 070501
[2] Yong Meng, Ping-Ping Fang, and Ji Lin. Nondegenerate Soliton Solutions of (2+1)-Dimensional Multi-Component Maccari System[J]. Chin. Phys. Lett., 2024, 41(6): 070501
[3] Ling-Juan Yan, Ya-Jie Liu, and Xing-Biao Hu. Some Modified Equations of the Sine-Hilbert Type[J]. Chin. Phys. Lett., 2024, 41(4): 070501
[4] Houhui Yi, Xin Zhang, Lingxian Shi, Yanli Yao, Shubin Wang, and Guoli Ma. Three-Soliton Interactions and the Implementation of Their All-Optical Switching Function[J]. Chin. Phys. Lett., 2024, 41(4): 070501
[5] Zhi-Zeng Si, Chao-Qing Dai, and Wei Liu. Tunable Three-Wavelength Fiber Laser and Transient Switching between Three-Wavelength Soliton and Q-Switched Mode-Locked States[J]. Chin. Phys. Lett., 2024, 41(2): 070501
[6] Abdul-Majid Wazwaz. New Painlevé Integrable (3+1)-Dimensional Combined pKP–BKP Equation: Lump and Multiple Soliton Solutions[J]. Chin. Phys. Lett., 2023, 40(12): 070501
[7] Xin Zhang, Houhui Yi, Yanli Yao, Shubin Wang, and Lingxian Shi. All-Optical Switches for Optical Soliton Interactions in a Birefringent Fiber[J]. Chin. Phys. Lett., 2023, 40(12): 070501
[8] Yanli Yao, Houhui Yi, Xin Zhang, and Guoli Ma. Effective Control of Three Soliton Interactions for the High-Order Nonlinear Schr?dinger Equation[J]. Chin. Phys. Lett., 2023, 40(10): 070501
[9] Vladimir I. Kruglov and Houria Triki. Interacting Solitons, Periodic Waves and Breather for Modified Korteweg–de Vries Equation[J]. Chin. Phys. Lett., 2023, 40(9): 070501
[10] Si-Yu Zhu, De-Xing Kong, and Sen-Yue Lou. Dark Korteweg–De Vrise System and Its Higher-Dimensional Deformations[J]. Chin. Phys. Lett., 2023, 40(8): 070501
[11] Xinyi Zhang and Ye Wu. Soliton Interactions with Different Dispersion Curve Functions in Heterogeneous Systems[J]. Chin. Phys. Lett., 2023, 40(8): 070501
[12] Xi-Meng Liu, Zhi-Yang Zhang, and Wen-Jun Liu. Physics-Informed Neural Network Method for Predicting Soliton Dynamics Supported by Complex Parity-Time Symmetric Potentials[J]. Chin. Phys. Lett., 2023, 40(7): 070501
[13] Cuicui Ding, Qin Zhou, Siliu Xu, Houria Triki, Mohammad Mirzazadeh, and Wenjun Liu. Nonautonomous Breather and Rogue Wave in Spinor Bose–Einstein Condensates with Space-Time Modulated Potentials[J]. Chin. Phys. Lett., 2023, 40(4): 070501
[14] S. Y. Lou, Man Jia, and Xia-Zhi Hao. Higher Dimensional Camassa–Holm Equations[J]. Chin. Phys. Lett., 2023, 40(2): 070501
[15] Shubin Wang, Guoli Ma, Xin Zhang, and Daiyin Zhu. Dynamic Behavior of Optical Soliton Interactions in Optical Communication Systems[J]. Chin. Phys. Lett., 2022, 39(11): 070501
Viewed
Full text


Abstract