Chin. Phys. Lett.  2024, Vol. 41 Issue (6): 066301    DOI: 10.1088/0256-307X/41/6/066301
CONDENSED MATTER: STRUCTURE, MECHANICAL AND THERMAL PROPERTIES |
Systematical High-Pressure Study of Praseodymium Nitrides in N-Rich Region
Ran Liu, Shuang Liu, Ying Zhang*, Peng Wang*, and Zhen Yao*
State Key Laboratory of Superhard Materials, College of Physics, Jilin University, Changchun 130012, China
Cite this article:   
Ran Liu, Shuang Liu, Ying Zhang et al  2024 Chin. Phys. Lett. 41 066301
Download: PDF(6880KB)   PDF(mobile)(7906KB)   HTML
Export: BibTeX | EndNote | Reference Manager | ProCite | RefWorks
Abstract We investigate high-pressure phase diagrams of Pr–N compounds by proposing five stable structures ($Pnma$-PrN, $I4/mmm$-PrN$_{2}$, $C2/m$-PrN$_{3}$, $P\bar{1}$-PrN$_{4}$, and $R3$-PrN$_{8})$ and two metastable structures ($P\bar{1}$-PrN$_{6}$ and $P\bar{1}$-PrN$_{10}$). The $P\bar{1}$-PrN$_{6}$ with the N$_{14}$-ring layer and $R3$-PrN$_{8}$ with the N$_{18}$-ring layer can be quenched to ambient conditions. For the $P\bar{1}$-PrN$_{10}$, the N$_{22}$-ring layer structure transfers into infinite chains with the pressure quenched to ambient pressure. Remarkably, a novel polynitrogen $hR8$-N designed by the excision of Pr atoms from $R3$-PrN$_{8}$ is obtained and can be quenched to ambient conditions. The N-rich structures of $P\bar{1}$-PrN$_{6}$, $R3$-PrN$_{8}$, c-PrN$_{10}$ and the solid pure nitrogen structure exhibit outstanding properties of energy density and explosive performance.
Received: 15 April 2024      Published: 20 June 2024
PACS:  63.20.dk (First-principles theory)  
  71.15.-m (Methods of electronic structure calculations)  
  71.20.-b (Electron density of states and band structure of crystalline solids)  
  61.50.Ah (Theory of crystal structure, crystal symmetry; calculations and modeling)  
TRENDMD:   
URL:  
https://cpl.iphy.ac.cn/10.1088/0256-307X/41/6/066301       OR      https://cpl.iphy.ac.cn/Y2024/V41/I6/066301
Service
E-mail this article
E-mail Alert
RSS
Articles by authors
Ran Liu
Shuang Liu
Ying Zhang
Peng Wang
and Zhen Yao
[1] Nellis W J, Radousky H B, Hamilton D C, Mitchell A C, Holmes N C, Christianson K B, and van Thiel M 1991 J. Chem. Phys. 94 2244
[2] Mailhiot C, Yang L H, and McMahan A K 1992 Phys. Rev. B 46 14419
[3] Zahariev F, Hooper J, Alavi S, Zhang F, and Woo T K 2007 Phys. Rev. B 75 140101
[4] Sun M, Yin Y H, and Pang Z K 2015 Comput. Mater. Sci. 98 399
[5] Kotakoski J and Albe K 2008 Phys. Rev. B 77 144109
[6] Lewis S P and Cohen M L 1992 Phys. Rev. B 46 11117
[7] Zahariev F, Hu A, Hooper J, Zhang F, and Woo T 2005 Phys. Rev. B 72 214108
[8] Ma Y M, Oganov A R, Li Z W, Xie Y, and Kotakoski J 2009 Phys. Rev. Lett. 102 065501
[9] Wang X L, He Z, Ma Y M, Cui T, Liu Z M, Liu B B, Li J F, and Zou G T 2007 J. Phys.: Condens. Matter 19 425226
[10] Bondarchuk S V and Minaev B F 2017 Comput. Mater. Sci. 133 122
[11] Wang X L, Tian F B, Wang L C, Cui T, Liu B B, and Zou G T 2010 J. Chem. Phys. 132 024502
[12] Mattson W D, Sanchez-Portal D, Chiesa S, and Martin R M 2004 Phys. Rev. Lett. 93 125501
[13] Wang X L, Wang Y C, Miao M S, Zhong X, Lv J, Cui T, Li J F, Chen L, Pickard C J, and Ma Y M 2012 Phys. Rev. Lett. 109 175502
[14] Greschner M J, Zhang M, Majumdar A, Liu H Y, Peng F, Tse J S, and Yao Y S 2016 J. Phys. Chem. A 120 2920
[15] Liu S J, Zhao L, Yao M G, Miao M S, and Liu B B 2020 Adv. Sci. 7 1902320
[16] Zhao L, Liu S J, Chen Y Z, Yi W C, Khodagholian D, Gu F L, Kelson E, Zheng Y H, Liu B B, and Miao M S 2022 Dalton Trans. 51 9369
[17] Eremets M I, Gavriliuk A G, Trojan I A, Dzivenko D A, and Boehler R 2004 Nat. Mater. 3 558
[18] Ji C, Adeleke A A, Yang L X, Wan B, Gou H Y, Yao Y S, Li B, Meng Y, Smith J S, Prakapenka V B, Liu W J, Shen G Y, Mao W L, and Mao H K 2020 Sci. Adv. 6 eaba9206
[19] Liu Y, Su H P, Niu C P, Wang X L, Zhang J R, Ge Z X, and Li Y C 2020 Chin. Phys. B 29 106201
[20] Tomasino D, Kim M, Smith J, and Yoo C S 2014 Phys. Rev. Lett. 113 205502
[21] Laniel D, Geneste G, Weck G, Mezouar M, and Loubeyre P 2019 Phys. Rev. Lett. 122 066001
[22] Lei L, Tang Q Q, Zhang F, Liu S, Wu B B, and Zhou C Y 2020 Chin. Phys. Lett. 37 068101
[23] Ding C, Wang J J, Han Y, Yuan J N, Gao H, and Sun J 2022 Chin. Phys. Lett. 39 036101
[24] Wang D X, Fu J, Li Y, Yao Z, Liu S, and Liu B B 2024 Chin. Phys. Lett. 41 036101
[25] Chen G, Niu C P, Xia W M, Zhang J, Zeng Z, and Wang X L 2023 Chin. Phys. Lett. 40 086102
[26] Zhai Z Y, Chen G, Zhang J, Wang X L, and Zeng Z 2023 AIP Adv. 13 055324
[27] Williams A S, Steele B A, and Oleynik I I 2017 J. Chem. Phys. 147 234701
[28] Medvedev S A, Trojan I A, Eremets M I, Palasyuk T, Klapötke T M, and Evers J 2009 J. Phys.: Condens. Matter 21 195404
[29] Wang X L, Li J F, Zhu H Y, Chen L, and Lin H Q 2014 J. Chem. Phys. 141 044717
[30] Eremets M I, Popov M Y, Trojan I A, Denisov V N, Boehler R, and Hemley R J 2004 J. Chem. Phys. 120 10618
[31] Ji C, Zheng R, Hou D B, Zhu H Y, Wu J Z, Chyu M C, and Ma Y Z 2012 J. Appl. Phys. 111 112613
[32] Zhu S S, Peng F, Liu H Y, Majumdar A, Gao T, and Yao Y S 2016 Inorg. Chem. 55 7550
[33] Wei S L, Li D, Liu Z, Li X, Tian F B, Duan D F, Liu B B, and Cui T 2017 Phys. Chem. Chem. Phys. 19 9246
[34] Zhang S T, Zhao Z Y, Liu L L, and Yang G C 2017 J. Power Sources 365 155
[35] Huang B W and Frapper G 2018 Chem. Mater. 30 7623
[36] Wei S L, Lian L L, Liu Y, Li D, Liu Z, and Cui T 2020 Phys. Chem. Chem. Phys. 22 5242
[37] Shi X H, Liu B, Yao Z, and Liu B B 2020 Chin. Phys. Lett. 37 047101
[38] Liu Z, Li D, Tian F B, Duan D F, Li H D, and Cui T 2020 Inorg. Chem. 59 8002
[39] Liu S, Liu R, Li H Y, Yao Z, Shi X H, Wang P, and Liu B B 2021 Inorg. Chem. 60 14022
[40] Steele B A and Oleynik I I 2017 J. Phys. Chem. 121 8955
[41] Wang F X, Rui Q, Jiang Q W, Li J F, Zhu H Y, Wang Q L, and Wang X L 2022 Solid State Commun. 358 115001
[42] Jin B, Liu Y Y, Yao Z, Liu S, and Wang P 2023 Dalton Trans. 52 14142
[43] Wang Y Y, Li Z H, Li R X, Li Y, Liu S, Yao Z, and Liu B B 2023 Inorg. Chem. 62 11674
[44] Miao J Y, Lu Z S, Peng F, and Lu C 2021 Chin. Phys. Lett. 38 066201
[45] Bykov M, Bykova E, Ponomareva A V, Abrikosov I A, Chariton S, Prakapenka V B, Mahmood M F, Dubrovinsky L, and Goncharov A F 2021 Angew. Chem. Int. Ed. 60 9003
[46] Bykov M, Fedotenko T, Chariton S, Laniel D, Glazyrin K, Hanfland M, Smith J S, Prakapenka V B, Mahmood M F, Goncharov A F, Ponomareva A V, Tasnádi F, Abrikosov A I, Bin Masood T, Hotz I, Rudenko A N, Katsnelson M I, Dubrovinskaia N, Dubrovinsky L, and Abrikosov I A 2021 Phys. Rev. Lett. 126 175501
[47] Bykov M, Khandarkhaeva S, Fedotenko T, Sedmak P, Dubrovinskaia N, and Dubrovinsky L 2018 Acta Crystallogr. Sect. E: Crystallogr. Commun. 74 1392
[48] Laniel D, Aslandukova A A, Aslandukov A N, Fedotenko T, Chariton S, Glazyrin K, Prakapenka V B, Dubrovinsky L S, and Dubrovinskaia N 2021 Inorg. Chem. 60 14594
[49] Laniel D, Weck G, Gaiffe G, Garbarino G, and Loubeyre P 2018 J. Phys. Chem. Lett. 9 1600
[50] Laniel D, Weck G, and Loubeyre P 2018 Inorg. Chem. 57 10685
[51] Steele B A, Stavrou E, Crowhurst J C, Zaug J M, Prakapenka V B, and Oleynik I I 2017 Chem. Mater. 29 735
[52] Aslandukov A, Trybel F, Aslandukova A, Laniel D, Fedotenko T, Khandarkhaeva S, Aprilis G, Giacobbe C, Bright E L, Abrikosov I A, Dubrovinsky L, and Dubrovinskaia N 2022 Angew. Chem. Int. Ed. 61 e202207469
[53] Bykov M, Chariton S, Bykova E, Khandarkhaeva S, Fedotenko T, Ponomareva A V, Tidholm J, Tasnádi F, Abrikosov I A, Sedmak P, Prakapenka V, Hanfland M, Liermann H P, Mahmood M, Goncharov A F, Dubrovinskaia N, and Dubrovinsky L 2020 Angew. Chem. Int. Ed. 59 10321
[54] Li K Y and Xue D F 2009 Chin. Sci. Bull. 54 328
[55] Sclar N 1962 J. Appl. Phys. 33 2999
[56] Duan C G, Sabirianov R F, Mei W N, Dowben P A, Jaswal S S, and Tsymbal E Y 2007 J. Phys.: Condens. Matter 19 315220
[57] Larson P, Lambrecht W R L, Chantis A, and van Schilfgaarde M 2007 Phys. Rev. B 75 045114
[58] Murugan A, Sudha Priyanga G, Rajeswarapalanichamy R, and Iyakutti K 2016 Mater. Sci. Semicond. Process. 41 17
[59] Galler A and Pourovskii L V 2022 New J. Phys. 24 043039
[60] Didchenko R and Gortsema F P 1963 J. Phys. Chem. Solids 24 863
[61] Imamura H, Imahashi T, Zaimi M, and Sakata Y 2008 J. Alloys Compd. 451 636
[62] Cynn H, Lipp M, Evans W, and Ohishi Y 2010 J. Phys.: Conf. Ser. 215 012010
[63] Wang Y C, Lv J, Zhu L, and Ma Y M 2012 Comput. Phys. Commun. 183 2063
[64] Blöchl P E 1994 Phys. Rev. B 50 17953
[65] Kresse G and Joubert D 1999 Phys. Rev. B 59 1758
[66] Anisimov V I, Zaanen J, and Andersen O K 1991 Phys. Rev. B 44 943
[67] Kaderoglu C, Surucu G, and Erkisi A 2017 J. Electron. Mater. 46 5827
[68] Lanatà N, Yao Y X, Wang C Z, Ho K M, and Kotliar G 2015 Phys. Rev. X 5 011008
[69] Dabhi S D and Jha P K 2015 Polymer 81 45
[70] Deringer V L, Tchougréeff A L, and Dronskowski R 2011 J. Phys. Chem. A 115 5461
[71] Maintz S, Deringer V L, Tchougréeff A L, and Dronskowski R 2016 J. Comput. Chem. 37 1030
[72] Momma K and Izumi F 2011 J. Appl. Crystallogr. 44 1272
[73] Chesnut G N and Vohra Y K 2000 Phys. Rev. B 62 2965
[74] Evans S R, Loa I, Lundegaard L F, and McMahon M I 2009 Phys. Rev. B 80 134105
[75] Gregoryanz E, Goncharov A F, Sanloup C, Somayazulu M, Mao H K, and Hemley R J 2007 J. Chem. Phys. 126 184505
[76] Bini R, Ulivi L, Kreutz J, and Jodl H J 2000 J. Chem. Phys. 112 8522
[77] Pickard C J and Needs R J 2009 Phys. Rev. Lett. 102 125702
[78] Mouhat F and Coudert F X 2014 Phys. Rev. B 90 224104
[79] Henkelman G, Arnaldsson A, and Jónsson H 2006 Comput. Mater. Sci. 36 354
[80] Tang W, Sanville E, and Henkelman G 2009 J. Phys.: Condens. Matter 21 084204
[81] Hou J Y, Weng X J, Oganov A R, Shao X, Gao G Y, Dong X, Wang H T, Tian Y J, and Zhou X F 2021 Phys. Rev. B 103 L060102
[82] Lin S Y, Xu M L, Hao J, and Li Y W 2022 Results Phys. 43 106093
[83] Liu L L, Zhang S T, and Zhang H J 2022 Chin. Phys. Lett. 39 056102
[84] Wang B S, Guégan F, and Frapper G 2022 J. Mater. Chem. C 10 10374
[85] Li Y W, Feng X L, Liu H Y, Hao J, Redfern S A T, Lei W W, Liu D, and Ma Y M 2018 Nat. Commun. 9 722
[86] Kamlet M J and Dickinson C 1968 J. Chem. Phys. 48 43
[87] Zhang L J, Wang Y C, Lv J, and Ma Y M 2017 Nat. Rev. Mater. 2 17005
[88] Stierstorfer J and Klapötke T M 2010 Angew. Chem. 49 6253
Related articles from Frontiers Journals
[1] Qiu-Hao Wang, Mei-Yan Ni, Shu-Jing Li, Fa-Wei Zheng, Hong-Yan Lu, and Ping Zhang. Interlayer Magnetic Interaction in the CrI$_3$/CrSe$_2$ Heterostructure[J]. Chin. Phys. Lett., 2024, 41(5): 066301
[2] Xu-Cai Wu, Shu-Zong Li, Jun-Shan Si, Bo Huang, and Wei-Bing Zhang. Quantum Anomalous Hall Effect with Tunable Chern Numbers in High-Temperature 1T-PrN$_2$ Monolayer[J]. Chin. Phys. Lett., 2024, 41(5): 066301
[3] Jing Xu, Ruijuan Xiao, and Hong Li. ESM Cloud Toolkit: A Copilot for Energy Storage Material Research[J]. Chin. Phys. Lett., 2024, 41(5): 066301
[4] Xie Zhang, Jun Kang, and Su-Huai Wei. Profiling Electronic and Phononic Band Structures of Semiconductors at Finite Temperatures: Methods and Applications[J]. Chin. Phys. Lett., 2024, 41(2): 066301
[5] Heming Zha, Wei Li, Gaojie Zhang, Wenjing Liu, Liwei Deng, Qi Jiang, Mao Ye, Hao Wu, Haixin Chang, and Shan Qiao. Enhanced Magnetic Interaction between Ga and Fe in Two-Dimensional van der Waals Ferromagnetic Crystal Fe$_{3}$GaTe$_{2}$[J]. Chin. Phys. Lett., 2023, 40(8): 066301
[6] Jing-Yang You, Xue-Juan Dong, Bo Gu, and Gang Su. Possible Room-Temperature Ferromagnetic Semiconductors[J]. Chin. Phys. Lett., 2023, 40(6): 066301
[7] Hao-Chen Wang, Zhi-Hao Wang, Xuan-Yan Chen, Su-Huai Wei, Wenguang Zhu, and Xie Zhang. Competition between Stepwise Polarization Switching and Chirality Coupling in Ferroelectric GeS Nanotubes[J]. Chin. Phys. Lett., 2023, 40(4): 066301
[8] Kun Luo, Baozhong Li, Lei Sun, Yingju Wu, Yanfeng Ge, Bing Liu, Julong He, Bo Xu, Zhisheng Zhao, and Yongjun Tian. Novel Boron Nitride Polymorphs with Graphite-Diamond Hybrid Structure[J]. Chin. Phys. Lett., 2022, 39(3): 066301
[9] Chenqiang Hua, Hua Bai, Yi Zheng, Zhu-An Xu, Shengyuan A. Yang, Yunhao Lu, and Su-Huai Wei. Strong Coupled Magnetic and Electric Ordering in Monolayer of Metal Thio(seleno)phosphates[J]. Chin. Phys. Lett., 2021, 38(7): 066301
[10] Ruoyun Lv, Xigui Yang, Dongwen Yang, Chunyao Niu, Chunxiang Zhao, Jinxu Qin, Jinhao Zang, Fuying Dong, Lin Dong, and Chongxin Shan. Computational Prediction of a Novel Superhard $sp^{3}$ Trigonal Carbon Allotrope with Bandgap Larger than Diamond[J]. Chin. Phys. Lett., 2021, 38(7): 066301
[11] Kun Luo , Bing Liu , Lei Sun , Zhisheng Zhao, and Yongjun Tian . Design of a Class of New $sp^{2}$–$sp^{3}$ Carbons Constructed by Graphite and Diamond Building Blocks[J]. Chin. Phys. Lett., 2021, 38(2): 066301
[12] Yulou Ouyang, Zhongwei Zhang, Cuiqian Yu, Jia He, Gang Yan, and Jie Chen. Accuracy of Machine Learning Potential for Predictions of Multiple-Target Physical Properties[J]. Chin. Phys. Lett., 2020, 37(12): 066301
[13] Meng Li, Yuan Li, Chun-Yan Wang, Qiang Sun. Negative Thermal Expansion of GaFe(CN)$_{6}$ and Effect of Na Insertion by First-Principles Calculations[J]. Chin. Phys. Lett., 2019, 36(6): 066301
[14] Lei Guo, Gang Tang, Jiawang Hong. Mechanical Properties of Formamidinium Halide Perovskites FABX$_{3}$ (FA=CH(NH$_{2})_{2}$; B=Pb, Sn; X=Br, I) by First-Principles Calculations[J]. Chin. Phys. Lett., 2019, 36(5): 066301
[15] Qing Wang, Hai-Peng Wang, De-Lu Geng, Ming-Xing Li, Bing-Bo Wei. A Calorimetric Study Assisted with First Principle Calculations of Specific Heat for Si-Ge Alloys within a Broad Temperature Range[J]. Chin. Phys. Lett., 2018, 35(12): 066301
Viewed
Full text


Abstract