Chin. Phys. Lett.  2024, Vol. 41 Issue (5): 054701    DOI: 10.1088/0256-307X/41/5/054701
FUNDAMENTAL AREAS OF PHENOMENOLOGY(INCLUDING APPLICATIONS) |
ESM Cloud Toolkit: A Copilot for Energy Storage Material Research
Jing Xu1,2, Ruijuan Xiao1,2*, and Hong Li1,2
1Institute of Physics, Chinese Academy of Sciences, Beijing 100190, China
2School of Physical Sciences, University of Chinese Academy of Sciences, Beijing 100049, China
Cite this article:   
Jing Xu, Ruijuan Xiao, and Hong Li 2024 Chin. Phys. Lett. 41 054701
Download: PDF(1886KB)   PDF(mobile)(1905KB)   HTML
Export: BibTeX | EndNote | Reference Manager | ProCite | RefWorks
Abstract Searching and designing new materials play crucial roles in the development of energy storage devices. In today's world where machine learning technology has shown strong predictive ability for various tasks, the combination with machine learning technology will accelerate the process of material development. Herein, we develop ESM Cloud Toolkit for energy storage materials based on MatElab platform, which is designed as a convenient and accurate way to automatically record and save the raw data of scientific research. The ESM Cloud Toolkit includes multiple features such as automatic archiving of computational simulation data, post-processing of experimental data, and machine learning applications. It makes the entire research workflow more automated and reduces the entry barrier for the application of machine learning technology in the domain of energy storage materials. It integrates data archive, traceability, processing, and reutilization, and allows individual research data to play a greater role in the era of AI.
Received: 03 January 2024      Published: 28 May 2024
PACS:  47.54.Jk (Materials science applications)  
  63.20.dk (First-principles theory)  
  07.05.Hd (Data acquisition: hardware and software)  
  07.05.Mh (Neural networks, fuzzy logic, artificial intelligence)  
TRENDMD:   
URL:  
https://cpl.iphy.ac.cn/10.1088/0256-307X/41/5/054701       OR      https://cpl.iphy.ac.cn/Y2024/V41/I5/054701
Service
E-mail this article
E-mail Alert
RSS
Articles by authors
Jing Xu
Ruijuan Xiao
and Hong Li
[1] Dunn B, Kamath H, and Tarascon J M 2011 Science 334 928
[2] Marom R, Amalraj S F, Leifer N, Jacob D, and Aurbach D 2011 J. Mater. Chem. 21 9938
[3] Goodenough J B and Kim Y 2010 Chem. Mater. 22 587
[4] Padhi A K, Nanjundaswamy K S, and Goodenough J B 1997 J. Electrochem. Soc. 144 1188
[5] Kang K, Meng Y S, Bréger J, Grey C P, and Ceder G 2006 Science 311 977
[6] Lombardo T, Duquesnoy M, El-Bouysidy H, Årén F, Gallo-Bueno A, Jørgensen P B, Bhowmik A, Demortière A, Ayerbe E, Alcaide F, Reynaud M, Carrasco J, Grimaud A, Zhang C, Vegge T, Johansson P, and Franco A A 2022 Chem. Rev. 122 10899
[7] Wang Y, Wu S, Shao W, Sun X, Wang Q, Xiao R, and Li H 2022 J. Materiomics 8 1038
[8] Gong S, Xie T, Zhu T, Wang S, Fadel E R, Li Y, and Grossman J C 2019 Phys. Rev. B 100 184103
[9] Salgado J E, Lerman S, Du Z, Xu C, and Abdolrahim N 2023 npj Comput. Mater. 9 214
[10] Lu L, Han X, Li J, Hua J, and Ouyang M 2013 J. Power Sources 226 272
[11] Gilligan L P J, Cobelli M, Taufour V, and Sanvito S 2023 npj Comput. Mater. 9 222
[12] Ling C 2022 npj Comput. Mater. 8 33
[13] Liu Y, Wang S, Nolan A M, Ling C, and Mo Y 2020 Adv. Energy Mater. 10 2002356
[14]Electronic Laboratory for Material Science
[15] Wang D, Zhou M B, Li Y L, He L, Sun W X, Lin Z F, Li J H, Zhu Y, Chen Q H, Zhang B H, Yuan J, and Weng H M 2023 Front. Data Comput. 5 29 (in Chinese)
[16] Wang D, Zhou M B, Huang D, Li Y L, Lin Z F, Liu J D, Zhu T N, Zhu Y, Li M X, Xiao R J, Yuan J, and Weng H M 2023 Chin. Sci. Bull. 69 1164
[17] Wang J, He T, Yang X, Cai Z, Wang Y, Lacivita V, Kim H, Ouyang B, and Ceder G 2023 Nat. Commun. 14 5210
[18] Zhu Z, Chu I H, Deng Z, and Ong S P 2015 Chem. Mater. 27 8318
[19]Materials science literature search powered by advanced NLP algorithms.
[20] Lee E and Persson K A 2014 Adv. Energy Mater. 4 1400498
[21] Liang J W, van der Maas E, Luo J, Li X N, Chen N, Adair K R, Li W H, Li J J, Hu Y F, Liu J, Zhang L, Zhao S Q, Lu S G, Wang J T, Huang H, Zhao W X, Parnell S, Smith R I, Ganapathy S, Wagemaker M, and Sun X L 2022 Adv. Energy Mater. 12 2103921
[22] Wu Y, Xu J, Lu P, Lu J, Gan L, Wang S, Xiao R, Li H, Chen L, and Wu F 2023 Adv. Energy Mater. 13 2301336
[23] Xu J, Wang Y, Wu S, Yang Q, Fu X, Xiao R, and Li H 2023 ACS Appl. Mater. & Interfaces 15 21086
[24] Liu Y, Rong X, Bai R, Xiao R, Xu C, Zhang C, Xu J, Yin W, Zhang Q, Liang X, Lu Y, Zhao J, Chen L, and Hu Y S 2023 Nat. Energy 8 1088
[25] Saal J E, Kirklin S, Aykol M, Meredig B, and Wolverton C 2013 JOM 65 1501
[26] Ask H L, Jens J M, Jakob B et al. 2017 J. Phys.: Condens. Matter 29 273002
[27] Liu Y et al. 2020 Energy Storage Mater. 31 434
[28] Liu Y et al. 2017 J. Materiomics 3 159
[29] Butler K T et al. 2018 Nature 559 547
[30] Behler J 2021 Chem. Rev. 121 10037
[31] Behler J 2011 J. Chem. Phys. 134 074106
[32] Willatt M J, Musil F, and Ceriotti M 2019 J. Chem. Phys. 150 154110
[33] Drautz R 2019 Phys. Rev. B 99 014104
[34] Liu Y et al. 2023 Natl. Sci. Rev. 10 nwad125
[35] Knauth P 2009 Solid State Ionics 180 911
[36] Zhang L, Han J, Wang H, Car R, and E W N 2018 Phys. Rev. Lett. 120 143001
[37] Zhang D, Bi H R, Dai F Z, Jiang W R, Zhang L F, and Wang H 2022 arXiv:2208.08236v3 [physics.chem-ph]
[38] Deng B, Zhong P, Jun K, Riebesell J, Han K, Bartel C J, and Ceder G 2023 Nat. Mach. Intell. 5 1031
[39] Hu S H 2023 Physics 52 857 (in Chinese)
Related articles from Frontiers Journals
[1] D. Basandrai, R. K. Bedi, A. Dhami, J. Sharma, S. B. Narang, K. Pubby, A. K. Srivastava. Radiation Losses in the Microwave X Band in Al-Cr Substituted Y-Type Hexaferrites[J]. Chin. Phys. Lett., 2017, 34(4): 054701
[2] TIAN Dong-Bin, ZHANG Huai-Wu, LAI Wei-En, WEN Qi-Ye, SONG Yuan-Qiang, WANG Zhi-Guo. Double Wire-Grid Terahertz Polarizer on Low-Loss Polymer Substrates[J]. Chin. Phys. Lett., 2010, 27(10): 054701
Viewed
Full text


Abstract