Chin. Phys. Lett.  2024, Vol. 41 Issue (5): 053102    DOI: 10.1088/0256-307X/41/5/053102
ATOMIC AND MOLECULAR PHYSICS |
Random Green's Function Method for Large-Scale Electronic Structure Calculation
Mingfa Tang1, Chang Liu2, Aixia Zhang1, Qingyun Zhang1, Jiayu Zhai3, Shengjun Yuan4,5, and Youqi Ke1*
1School of Physical Science and Technology, ShanghaiTech University, Shanghai 201210, China
2Xiaogan Sichuang Information Technology Co., LTD, Xiaogan 432000, China
3Institute of Mathematical Sciences, ShanghaiTech University, Shanghai 201210, China
4Key Laboratory of Artificial Micro- and Nano-structures of Ministry of Education, and School of Physics and Technology, Wuhan University, Wuhan 430072, China
5Wuhan Institute of Quantum Technology, Wuhan 430206, China
Cite this article:   
Mingfa Tang, Chang Liu, Aixia Zhang et al  2024 Chin. Phys. Lett. 41 053102
Download: PDF(1080KB)   PDF(mobile)(1375KB)   HTML
Export: BibTeX | EndNote | Reference Manager | ProCite | RefWorks
Abstract We report a linear-scaling random Green's function (rGF) method for large-scale electronic structure calculation. In this method, the rGF is defined on a set of random states and is efficiently calculated by projecting onto Krylov subspace. With the rGF method, the Fermi–Dirac operator can be obtained directly, avoiding the polynomial expansion to Fermi–Dirac function. To demonstrate the applicability, we implement the rGF method with the density-functional tight-binding method. It is shown that the Krylov subspace can maintain at small size for materials with different gaps at zero temperature, including H$_{2}$O and Si clusters. We find with a simple deflation technique that the rGF self-consistent calculation of H$_{2}$O clusters at $T=0$ K can reach an error of $\sim$ $1$ meV per H$_{2}$O molecule in total energy, compared to deterministic calculations. The rGF method provides an effective stochastic method for large-scale electronic structure simulation.
Received: 17 April 2024      Express Letter Published: 28 April 2024
PACS:  31.15.E-  
  71.15.-m (Methods of electronic structure calculations)  
TRENDMD:   
URL:  
https://cpl.iphy.ac.cn/10.1088/0256-307X/41/5/053102       OR      https://cpl.iphy.ac.cn/Y2024/V41/I5/053102
Service
E-mail this article
E-mail Alert
RSS
Articles by authors
Mingfa Tang
Chang Liu
Aixia Zhang
Qingyun Zhang
Jiayu Zhai
Shengjun Yuan
and Youqi Ke
[1] Goedecker S 1999 Rev. Mod. Phys. 71 1085
[2] Bowler D R and Miyazaki T 2012 Rep. Prog. Phys. 75 036503
[3] Hohenberg P and Kohn W 1964 Phys. Rev. 136 B864
[4] Kohn W and Sham L J 1965 Phys. Rev. 140 A1133
[5] Li X P, Nunes R W, and Vanderbilt D 1993 Phys. Rev. B 47 10891
[6] Yang W 1991 Phys. Rev. Lett. 66 1438
[7] Nunes R W and Vanderbilt D 1994 Phys. Rev. B 50 17611
[8] Niklasson A M N 2002 Phys. Rev. B 66 155115
[9] Goedecker S and Teter M 1995 Phys. Rev. B 51 9455
[10] Alben R, Blume M, Krakauer H, and Schwartz L 1975 Phys. Rev. B 12 4090
[11] Baer R, Neuhauser D, and Rabani E 2013 Phys. Rev. Lett. 111 106402
[12] Zhou W and Yuan S 2023 Chin. Phys. Lett. 40 027101
[13] Fabian M D, Shpiro B, Rabani E, Neuhauser D, and Baer R 2019 WWIREs: Comput. Mol. Sci. 9 e1412
[14] Hams A and De Raedt H 2000 Phys. Rev. E 62 4365
[15] Gambhir A S, Stathopoulos A, and Orginos K 2017 SIAM J. Sci. Comput. 39 A532
[16] Tang J M and Saad Y 2012 Numer. Linear Alg. Appl. 19 485
[17] Stathopoulos A, Laeuchli J, and Orginos K 2013 SIAM J. Sci. Comput. 35 S299
[18] Wang Z T, Chern G W, Batista C D, and Barros K 2018 J. Chem. Phys. 148 094107
[19] Moussa J E and Baczewski A D 2019 Electron. Struct. 1 033001
[20] Laeuchli J and Stathopoulos A 2020 SIAM J. Sci. Comput. 42 A1459
[21] Neuhauser D, Baer R, and Rabani E 2014 J. Chem. Phys. 141 041102
[22] Arnon E, Rabani E, Neuhauser D, and Baer R 2017 J. Chem. Phys. 146 224111
[23] Chen M, Baer R, Neuhauser D, and Rabani E 2019 J. Chem. Phys. 150 034106
[24] Chen M, Baer R, Neuhauser D, and Rabani E 2021 J. Chem. Phys. 154 204108
[25] White A J and Collins L A 2020 Phys. Rev. Lett. 125 055002
[26] Neuhauser D, Gao Y, Arntsen C, Karshenas C, Rabani E, and Baer R 2014 Phys. Rev. Lett. 113 076402
[27] Rabani E, Baer R, and Neuhauser D 2015 Phys. Rev. B 91 235302
[28] Gao Y, Neuhauser D, Baer R, and Rabani E 2015 J. Chem. Phys. 142 034106
[29]Mahan G D 2013 Many-Particle Physics (New York: Springer)
[30]Kadanoff L P and Baym G A 1962 Quantum Statistical Mechanics (New York: Benjamin W A, Inc.)
[31] Hutchinson M F 1990 Commun. Stat. -Simul. Comput. 19 433
[32] Teng H, Fujiwara T, Hoshi T, Sogabe T, Zhang S L, and Yamamoto S 2011 Phys. Rev. B 83 165103
[33]Sogabe T 2022 Krylov Subspace Methods for Linear Systems (Singapore: Springer)
[34] Hoshi T, Yamamoto S, Fujiwara T, Sogabe T, and Zhang S L 2012 J. Phys.: Condens. Matter 24 165502
[35]Supplementary material includes more information about the convergence of Krylov subspace and Chebyshev polynomial expansion for H$_{2}$O- and Si-clusters.
[36] Ipsen I C F and Meyer C D 1998 Am. Math. Mon. 105 889
Campbell S L, Ipsen I C F, Kelley C T, and Meyer C D 1996 BIT Numer. Math. 36 664
[37] Porezag D, Frauenheim T, Köhler T, Seifert G, and Kaschner R 1995 Phys. Rev. B 51 12947
[38] Seifert G, Porezag D, and Frauenheim T 1996 Int. J. Quantum Chem. 58 185
[39] Elstner M, Porezag D, Jungnickel G, Elsner J, Haugk M, Frauenheim T, Suhai S, and Seifert G 1998 Phys. Rev. B 58 7260
[40] Koskinen P and Mäkinen V 2009 Comput. Mater. Sci. 47 237
[41] Elstner M and Seifert G 2014 Philos. Trans. R. Soc. A 372 20120483
[42]Balay S, Abhyankar S, Mark F et al. 2023 [Online] https://petsc.org/
[43]Balay S, Abhyankar S, Mark F et al. 2023 PETSc/TAO Users Manual.
[44] Balay S, Gropp W D, McInnes L C, and Smith B F 1997 Efficient Management of Parallelism in Object Oriented Numerical Software Libraries. In: Modern Software Tools for Scientific Computing, Arge E, Bruaset A M, and Langtangen H P (eds) (Birkhäuser Press) pp 163–202
[45]Bock N, Cawkwell M J, Coe J D, Krishnapriyan A, Kroonblawd M P, Lang A, Liu C, Saez E M, Mniszewski S M, Negre C F A, Niklasson A M N, Sanville E, Wood M A, and Yang P 2008 “Latte” [Online] https://github.com/lanl/LATTE
[46] Krishnapriyan A, Yang P, Niklasson A M N, and Cawkwell M J 2017 J. Chem. Theory Comput. 13 6191
[47] Rauls E, Elsner J, Gutierrez R, and Frauenheim T 1999 Solid State Commun. 111 459
[48]Seifert G, Eschrig H, and Bieger W 1986 Z. Phys. Chem. 267 529
[49] Humphrey W, Dalke A, and Schulten K 1996 J. Mol. Graphics 14 33
[50] Niklasson A M N 2004 Phys. Rev. B 70 193102
[51] Negre C F A, Mniszewski S M, Cawkwell M J, Bock N, Wall M E, and Niklasson A M N 2016 J. Chem. Theory Comput. 12 3063
Related articles from Frontiers Journals
[1] Weiqing Zhou and Shengjun Yuan. A Time-Dependent Random State Approach for Large-Scale Density Functional Calculations[J]. Chin. Phys. Lett., 2023, 40(2): 053102
[2] Haijiang Liu, Yuanji Xu, Yigui Zhong, Jianyu Guan, Lingyuan Kong, Junzhang Ma, Yaobo Huang, Qiuyun Chen, Genfu Chen, Ming Shi, Yi-feng Yang, Hong Ding. Hybridization Effects Revealed by Angle-Resolved Photoemission Spectroscopy in Heavy-Fermion Ce$_{2}$IrIn$_{8}$[J]. Chin. Phys. Lett., 2019, 36(9): 053102
[3] Nagat Elkahwagy, Atif Ismail, S. M. A. Maize, K. R. Mahmoud. Theoretical Investigation on the Low-Lying States of LaP Molecule[J]. Chin. Phys. Lett., 2018, 35(10): 053102
[4] Yi-Bo Li, Li-Jin Zeng, Chun-Xiang Zhao, Chun-Yao Niu. First-Principles Study of Magnetic Properties of TM$_{13}$ and TM$_{13}$@Au$_{32}$ Clusters (TM=Mn, Co)[J]. Chin. Phys. Lett., 2018, 35(10): 053102
[5] WU Dong-Lan, TAN Bin, WAN Hui-Jun, XIE An-Dong, DING Da-Jun. The Analytical Potential Energy Function of NH Radical Molecule in External Electric Field[J]. Chin. Phys. Lett., 2015, 32(07): 053102
[6] CHEN Yu-Hong, ZHANG Bing-Wen, ZHANG Cai-Rong, ZHANG Mei-Ling, KANG Long, LUO Yong-Chun. First-Principle Study of H2 Adsorption on Mg3N2(110) Surface[J]. Chin. Phys. Lett., 2014, 31(06): 053102
[7] Masood Yousaf, M. A. Saeed, Ahmad Radzi Mat Isa, H. A. Rahnamaye Aliabad, M. R. Sahar . An Insight into the Structural, Electronic and Transport Characteristics of XIn2S4 (X = Zn, Hg) Thiospinels using a Highly Accurate All-Electron FP-LAPW+Lo Method[J]. Chin. Phys. Lett., 2013, 30(7): 053102
[8] REN Juan , ZHANG Hong, CHENG Xin-Lu. First-Principles Study of Hydrogen Binding Property in Alkaline-Earth (Be, Mg, Ca) Metal-Doped Closo-Boranes[J]. Chin. Phys. Lett., 2013, 30(3): 053102
[9] WANG Zhi-Ping ZHANG Feng-Shou, ZHU Yun, XIE Guan-Hao. Angle-Dependent Irradiation of C4 in Femtosecond Laser Pulses[J]. Chin. Phys. Lett., 2012, 29(7): 053102
[10] SHI Yu, SUN Qing-Qing, DONG Lin, LIU Han, DING Shi-Jin, ZHANG Wei. Atomic Layer Deposition of Al2O3 on H-Passivated GeSi: Initial Surface Reaction Pathways with H/GeSi(100)-2×1[J]. Chin. Phys. Lett., 2009, 26(5): 053102
Viewed
Full text


Abstract