Chin. Phys. Lett.  2024, Vol. 41 Issue (3): 037302    DOI: 10.1088/0256-307X/41/3/037302
CONDENSED MATTER: ELECTRONIC STRUCTURE, ELECTRICAL, MAGNETIC, AND OPTICAL PROPERTIES |
Constructing Hopf Insulator from Geometric Perspective of Hopf Invariant
Zhi-Wen Chang1, Wei-Chang Hao2, Miguel Bustamante3, and Xin Liu1*
1Institute of Theoretical Physics, School of Physics and Optoelectronic Engineering, Beijing University of Technology, Beijing 100124, China
2School of Physics, Beihang University, Beijing 100191, China
3Complex and Adaptive Systems Laboratory, School of Mathematics and Statistics, University College Dublin, Belfield, 4, Dublin, Ireland
Cite this article:   
Zhi-Wen Chang, Wei-Chang Hao, Miguel Bustamante et al  2024 Chin. Phys. Lett. 41 037302
Download: PDF(1387KB)   PDF(mobile)(1419KB)   HTML
Export: BibTeX | EndNote | Reference Manager | ProCite | RefWorks
Abstract We propose a method to construct Hopf insulators based on the study of topological defects from the geometric perspective of Hopf invariant $I$. Firstly, we prove two types of topological defects naturally inhering in the inner differential structure of the Hopf mapping. One type is the four-dimensional point defects, which lead to a topological phase transition occurring at the Dirac points. The other type is the three-dimensional merons, whose topological charges give the evaluations of $I$. Then, we show two ways to establish the Hopf insulator models. One approach is to modify the locations of merons, thereby the contributions of charges to $I$ will change. The other is related to the number of defects. It is found that $I$ will decrease if the number reduces, while increase if additional defects are added. The method developed in this study is expected to provide a new perspective for understanding the topological invariants, which opens a new door in exploring and designing novel topological materials in three dimensions.
Received: 17 November 2023      Editors' Suggestion Published: 05 March 2024
PACS:  73.43.-f (Quantum Hall effects)  
  03.65.Vf (Phases: geometric; dynamic or topological)  
  73.20.At (Surface states, band structure, electron density of states)  
  05.30.Rt (Quantum phase transitions)  
TRENDMD:   
URL:  
https://cpl.iphy.ac.cn/10.1088/0256-307X/41/3/037302       OR      https://cpl.iphy.ac.cn/Y2024/V41/I3/037302
Service
E-mail this article
E-mail Alert
RSS
Articles by authors
Zhi-Wen Chang
Wei-Chang Hao
Miguel Bustamante
and Xin Liu
[1] Hasan M Z and Kane C L 2010 Rev. Mod. Phys. 82 3045
[2] Qi X L and Zhang S C 2011 Rev. Mod. Phys. 83 1057
[3] Ando Y 2013 J. Phys. Soc. Jpn. 82 102001
[4] Xu Y 2019 Front. Phys. 14 43402
[5] Thouless D J, Kohmoto M, Nightingale M P, and den Nijs M 1982 Phys. Rev. Lett. 49 405
[6] Qi X L, Huges T L, and Zhang S C 2008 Phys. Rev. B 78 195424
[7] Chang Z W, Hao W C, and Liu X 2022 Commun. Theor. Phys. 74 015701
[8] Chang Z W, Hao W C, and Liu X 2022 J. Phys.: Condens. Matter 34 485502
[9] Moore J E, Ran Y, and Wen X G 2008 Phys. Rev. Lett. 101 186805
[10] Deng D L, Wang S T, and Duan L M 2014 Phys. Rev. B 89 075126
[11] Kennedy R 2016 Phys. Rev. B 94 035137
[12] Deng D L, Wang S T, Shen C, and Duan L M 2013 Phys. Rev. B 88 201105
[13] Liu C X, Vafa F, and Xu C K 2017 Phys. Rev. B 95 161116
[14] Deng D L, Wang S T, Sun K, and Duan L M 2018 Chin. Phys. Lett. 35 013701
[15] Schnyder A P, Ryu S, Furusaki A, and Ludwig A W W 2008 Phys. Rev. B 78 195125
[16] Kitaev A 2009 AIP Conf. Proc. 1134 22
[17] Wang Z, Zeng X T, Biao Y, Yan Z, and Yu R 2023 Phys. Rev. Lett. 130 057201
[18] Yuan X X, He L, Wang S T, Deng D L, Wang F, Lian W Q, Wang X, Zhang C H, Zhang H L, Chang X Y, and Duan L M 2017 Chin. Phys. Lett. 34 060302
[19] Yan Z B, Bi R, Shen H T, Lu L, Zhang S C, and Wang Z 2017 Phys. Rev. B 96 041103
[20] Ezawa M 2017 Phys. Rev. B 96 041202
[21] Bi R, Yan Z, Lu L, and Wang Z 2017 Phys. Rev. B 96 201305
[22] Liu X, Zhang Y Z, Duan Y S, and Fu L B 2005 Ann. Phys. 318 419
Related articles from Frontiers Journals
[1] Xinyi Wan, Xiaodong Fan, Changwei Zhai, Zhenyu Yang, Lilong Hao, Lin Li, Yunfeng Lu, and Changgan Zeng. Contrasting Transport Performance of Electron- and Hole-Doped Epitaxial Graphene for Quantum Resistance Metrology[J]. Chin. Phys. Lett., 2023, 40(10): 037302
[2] Tian-Sheng Zeng, Liangdong Hu, and W. Zhu. Bosonic Halperin (441) Fractional Quantum Hall Effect at Filling Factor $\nu=2/5$[J]. Chin. Phys. Lett., 2022, 39(1): 037302
[3] Bin Han, Junjie Zeng, and Zhenhua Qiao. In-Plane Magnetization-Induced Corner States in Bismuthene[J]. Chin. Phys. Lett., 2022, 39(1): 037302
[4] Rubah Kausar, Chao Zheng, and Xin Wan. Level Statistics Crossover of Chiral Surface States in a Three-Dimensional Quantum Hall System[J]. Chin. Phys. Lett., 2021, 38(5): 037302
[5] Na Jiang and Min Lu. Topological Distillation by Principal Component Analysis in Disordered Fractional Quantum Hall States[J]. Chin. Phys. Lett., 2020, 37(11): 037302
[6] Qian Sui, Jiaxin Zhang, Suhua Jin, Yunyouyou Xia, and Gang Li. Model Hamiltonian for the Quantum Anomalous Hall State in Iron-Halogenide[J]. Chin. Phys. Lett., 2020, 37(9): 037302
[7] Ran Tao, Lin Li, Li-Jun Zhu, Yue-Dong Yan, Lin-Hai Guo, Xiao-Dong Fan, and Chang-Gan Zeng. Giant-Capacitance-Induced Wide Quantum Hall Plateaus in Graphene on LaAlO$_{3}$/SrTiO$_{3}$ Heterostructures[J]. Chin. Phys. Lett., 2020, 37(7): 037302
[8] Min Lu, Na Jiang, Xin Wan. Quasihole Tunneling in Disordered Fractional Quantum Hall Systems[J]. Chin. Phys. Lett., 2019, 36(8): 037302
[9] Qiu-Shi Wang, Bin Zhang, Wei-Zhu Yi, Meng-Nan Chen, Baigeng Wang, R. Shen. Impurity Effects at Surfaces of a Photon-Dressed Bi$_2$Se$_3$ Thin Film[J]. Chin. Phys. Lett., 2018, 35(10): 037302
[10] Shou-juan Zhang, Wei-xiao Ji, Chang-wen Zhang, Shu-feng Zhang, Ping Li, Sheng-shi Li, Shi-shen Yan. Discovery of Two-Dimensional Quantum Spin Hall Effect in Triangular Transition-Metal Carbides[J]. Chin. Phys. Lett., 2018, 35(8): 037302
[11] Ru Zheng, Rong-Qiang He, Zhong-Yi Lu. An Anderson Impurity Interacting with the Helical Edge States in a Quantum Spin Hall Insulator[J]. Chin. Phys. Lett., 2018, 35(6): 037302
[12] Xia-Yin Liu, Jia-Lu Wang, Wei You, Ting-Ting Wang, Hai-Yang Yang, Wen-He Jiao, Hong-Ying Mao, Li Zhang, Jie Cheng, Yu-Ke Li. Anisotropic Magnetoresistivity in Semimetal TaSb$_2$[J]. Chin. Phys. Lett., 2017, 34(12): 037302
[13] X.-X. Yuan, L. He, S.-T. Wang, D.-L. Deng, F. Wang, W.-Q. Lian, X. Wang, C.-H. Zhang, H.-L. Zhang, X.-Y. Chang, L.-M. Duan. Observation of Topological Links Associated with Hopf Insulators in a Solid-State Quantum Simulator[J]. Chin. Phys. Lett., 2017, 34(6): 037302
[14] Yu-Ying Zhu, Meng-Meng Bai, Shu-Yu Zheng, Jie Fan, Xiu-Nian Jing, Zhong-Qing Ji, Chang-Li Yang, Guang-Tong Liu, Li Lu. Coulomb-Dominated Oscillations in Fabry–Perot Quantum Hall Interferometers[J]. Chin. Phys. Lett., 2017, 34(6): 037302
[15] Xia Dai, Cong-Cong Le, Xian-Xin Wu, Sheng-Shan Qin, Zhi-Ping Lin, Jiang-Ping Hu. Topological Phase in Non-centrosymmetric Material NaSnBi[J]. Chin. Phys. Lett., 2016, 33(12): 037302
Viewed
Full text


Abstract