Chin. Phys. Lett.  2024, Vol. 41 Issue (3): 036101    DOI: 10.1088/0256-307X/41/3/036101
CONDENSED MATTER: STRUCTURE, MECHANICAL AND THERMAL PROPERTIES |
Interception of Layered LP-N and HLP-N at Ambient Conditions by Confined Template
Dong-Xue Wang1, Jing Fu2, Yi Li3, Zhen Yao1*, Shuang Liu1*, and Bing-Bing Liu1*
1State Key Laboratory of Superhard Materials, College of Physics, Jilin University, Changchun 130012, China
2Basic Science Department, Jilin Institute of Architecture and Technology, Changchun 130000, China
3College of Science, Liaoning University of Technology, Jinzhou 121000, China
Cite this article:   
Dong-Xue Wang, Jing Fu, Yi Li et al  2024 Chin. Phys. Lett. 41 036101
Download: PDF(12403KB)   PDF(mobile)(12906KB)   HTML
Export: BibTeX | EndNote | Reference Manager | ProCite | RefWorks
Abstract We propose a feasible strategy of intercepting the layered polymeric nitrogen (LP-N) and hexagonal layered polymeric nitrogen (HLP-N) at ambient conditions by using the confinement templates. The stable mechanism of confined LP-N and HLP-N at ambient conditions is revealed, namely the synergistic effect of charge transfer and vdW confinement effect. The influence rule of interlayer spacing on the stability of LP-N is revealed. Most importantly, the nitrogen content and energy density of recoverable LP-N@graphene (70.59%, 8.15 kJ/g), LP-N@h-BN (70.59%, 7.96 kJ/g), HLP-N@graphene (68.97%, 9.31 kJ/g), and HLP-N@h-BN (69.57%, 8.05 kJ/g) refresh the new record for the confinement polynitrogen system.
Received: 04 December 2023      Published: 12 March 2024
PACS:  67.85.-d (Ultracold gases, trapped gases)  
  03.75.Mn (Multicomponent condensates; spinor condensates)  
  05.30.Jp (Boson systems)  
  05.30.Rt (Quantum phase transitions)  
TRENDMD:   
URL:  
https://cpl.iphy.ac.cn/10.1088/0256-307X/41/3/036101       OR      https://cpl.iphy.ac.cn/Y2024/V41/I3/036101
Service
E-mail this article
E-mail Alert
RSS
Articles by authors
Dong-Xue Wang
Jing Fu
Yi Li
Zhen Yao
Shuang Liu
and Bing-Bing Liu
[1] Chen G, Niu C P, Xia W M, Zeng Z, and Wang X L 2023 Chin. Phys. Lett. 40 086102
[2] Sun C L, Guo W, and Yao Y G 2022 Chin. Phys. Lett. 39 087101
[3] Liu L L, Zhang S T, and Zhang H J 2022 Chin. Phys. Lett. 39 056102
[4] Zhai Z Y, Chen G, Wang X L, and Zeng Z 2023 AIP Adv. 13 055324
[5] Zhang J, Niu C P, Zhang H X, Wang X L, and Zeng Z 2021 J. Phys. Chem. Lett. 12 5731
[6] Wang X L, Wang Y C, Miao M S, Zhong X, Lv J, Cui T, Li J F, Pickard C J, and Ma Y M 2012 Phys. Rev. Lett. 109 175502
[7] Alemany M M G and Martins J L 2003 Phys. Rev. B 68 024110
[8] Mailhiot C, Yang L H, and McMahan A K 1992 Phys. Rev. B 46 14419
[9] Martin R M and Needs R J 1986 Phys. Rev. B 34 5082
[10] Ma Y M, Oganov A R, Xie Y, and Kotakoski J 2009 Phys. Rev. Lett. 102 065501
[11] Zahariev F, Hu A, Zhang F, and Woo T 2005 Phys. Rev. B 72 214108
[12] Sun J, Martinez-Canales M, Pickard C J, and Needs R J 2013 Phys. Rev. Lett. 111 175502
[13] Zahariev F, Hooper J, Zhang F, and Woo T K 2007 Phys. Rev. B 75 140101
[14] Wang X L, Tian F B, Wang L, Jin X L, Duan D F, Liu B B, and Cui T 2013 New J. Phys. 15 013010
[15] Sun M, Yin Y H, and Pang Z K 2015 Comput. Mater. Sci. 98 399
[16] Eremets M I, Gavriliuk A G, Dzivenko D A, and Boehler R 2004 Nat. Mater. 3 558
[17] Tomasino D, Smith J, and Yoo C S 2014 Phys. Rev. Lett. 113 205502
[18] Laniel D, Geneste G, Mezouar M, and Loubeyre P 2019 Phys. Rev. Lett. 122 066001
[19] Ji C, Adeleke A A, Yang L X, Wan B, Gou H Y, Yao Y S, Li B, Meng Y, Smith J S, Prakapenka V B, Liu W J, Mao W L, and Mao H K 2020 Sci. Adv. 6 eaba9206
[20] Zhang X L, Pan J B, Jin X, Zhang Y F, Zhang Y Y, and Du S X 2021 Chin. Phys. Lett. 38 066801
[21] Du J, Lyu B S, Shan W F, Chen J J, Zhou X L, Xie J X, Deng A L, Hu C, Liang Q, Xie G B, Luo W D, and Shi Z W 2021 Chin. Phys. Lett. 38 056301
[22] Zhou S H, Zhou C W, Yang X D, Zhong J Q, and Mao H Y 2021 Chin. Phys. Lett. 38 057305
[23] Zhang X, Pan G P, Kang J, and Meng Z Y 2021 Chin. Phys. Lett. 38 077305
[24] Abou-Rachid H, Hu A G, Song Y F, and Lussier L S 2008 Phys. Rev. Lett. 100 196401
[25] Timoshevskii V, Ji W, Lussier L S, and Guo H 2009 Phys. Rev. B 80 115409
[26] Zheng F W, Wang C, and Zhang P 2012 J. Comput. Theor. Nanosci. 9 1129
[27] Liu S J, Yao M G, Ma F X, Liu B, Yao Z, Cui T, and Liu B B 2016 J. Phys. Chem. C 120 16412
[28] Liu S, Liu B, Yao Z, Liu S J, Niu S F, and Liu B B 2019 RSC Adv. 9 29987
[29] Shi X H, Liu B, Liu S, Niu S J, Liu R, and Liu B B 2018 Sci. Rep. 8 13758
[30] Niu S F, Liu S J, Liu B, Shi X H, Liu S, Liu R, Cui T, and Liu B B 2018 RSC Adv. 8 30912
[31] Liu S, Yao Z, and Lu S C 2021 Mater. Today Commun. 26 101670
[32] Ding C, Wang J J, Han Y, Gao H, and Sun J 2022 Chin. Phys. Lett. 39 036101
[33] Li Y L, Bai H C, Lin F X, and Huang Y H 2018 Physica E 103 444
[34] Kresse G and Furthmüller J 1996 Phys. Rev. B 54 11169
[35] Perdew J P, Burke K, and Ernzerhof M 1996 Phys. Rev. Lett. 77 3865
[36] Hammer B, Hansen L B, and Nørskov J K 1999 Phys. Rev. B 59 7413
[37] Parrinello M and Rahman A 1980 Phys. Rev. Lett. 45 1196
[38] Wang V, Xu N, Liu J C, Tang G, and Geng W T 2021 Comput. Phys. Commun. 267 108033
[39] Zhi G X, Xu C C, Ning F L, and Cao C 2022 Comput. Phys. Commun. 271 108196
[40] Hinuma Y, Pizzi G, Oba F, and Tanaka I 2017 Comput. Mater. Sci. 128 140
[41] Los J H, Katsnelson M I, and Fasolino A 2015 Phys. Rev. B 91 045415
[42] Falin A, Cai Q, Santos E J G, Scullion D, Qian D, Zhang R, Yang Z, Huang S M, Watanabe K, Taniguchi T, Barnett M R, Ruoff R S, and Li L H 2017 Nat. Commun. 8 15815
[43] Roy S, Zhang X, Puthirath A B, Meiyazhagan A, Bhattacharyya S, Rahman M M, Babu G, Susarla S, Saju S K, Tran M K, Sassi L M, Saadi M A S R, Lai J W, Sahin O, Sajadi S M, Dharmarajan B, Salpekar D, Chakingal N, Baburaj A, Shuai X T, Adumbumkulath A, Miller K A, Gayle J M, Ajnsztajn A, Prasankumar T, Harikrishnan V V J, Ojha V, Kannan H, Khater A Z, Zhu Z W, Iyengar S A, Autreto P A D S, Oliveira E F, Gao G H, Birdwell A G, Neupane M R, Ivanov T G, Taha-Tijerina J, Yadav R M, Vajtai R, and Ajayan P M 2021 Adv. Mater. 33 2101589
[44] Cao Y C and Guo M M 2016 Petrochem. Technol. 45 1149 (in Chinese)
[45] Wang Y Y, Li Z H, Li R X, Li Y, Yao Z, and Liu B B 2023 Inorg. Chem. 62 11674
[46] Zhang J, Li X F, and Niu H Y 2017 Phys. Rev. B 95 020103
Related articles from Frontiers Journals
[1] Yongqiang Li, Chengkun Xing, Ming Gong, Guangcan Guo, and Jianmin Yuan. Heteronuclear Magnetisms with Ultracold Spinor Bosonic Gases in Optical Lattices[J]. Chin. Phys. Lett., 2024, 41(2): 036101
[2] Gui-hua Chen, Hong-cheng Wang, Hai-ming Deng, and Boris A. Malomed. Vortex Quantum Droplets under Competing Nonlinearities[J]. Chin. Phys. Lett., 2024, 41(2): 036101
[3] Jin-Yu Liu, Xiao-Qiong Wang, and Zhi-Fang Xu. Realization of $^{87}$Rb Bose–Einstein Condensates in Higher Bands of a Hexagonal Boron-Nitride Optical Lattice[J]. Chin. Phys. Lett., 2023, 40(8): 036101
[4] Canzhu Tan, Fachao Hu, Zhijing Niu, Yuhai Jiang, Matthias Weidemüller, and Bing Zhu. Measurements of Dipole Moments for the $5{s}5{p}\,^3\!{P}_1$–$5{s}n{s}\, ^3\!{S}_1$ Transitions via Autler–Townes Spectroscopy[J]. Chin. Phys. Lett., 2022, 39(9): 036101
[5] Benquan Lu, Xiaotong Lu, Jiguang Li, and Hong Chang. Reconciliation of Theoretical Lifetimes of the $5s5p\,^3\!P^{\rm o}_2$ Metastable State for $^{88}$Sr with Measurement: The Role of the Blackbody-Radiation-Induced Decay[J]. Chin. Phys. Lett., 2022, 39(7): 036101
[6] Rong Du, Jian-Chong Xing, Bo Xiong, Jun-Hui Zheng, and Tao Yang. Quench Dynamics of Bose–Einstein Condensates in Boxlike Traps[J]. Chin. Phys. Lett., 2022, 39(7): 036101
[7] Xiang-Chuan Yan, Da-Li Sun, Lu Wang, Jing Min, Shi-Guo Peng, and Kai-Jun Jiang. Production of Degenerate Fermi Gases of $^6$Li Atoms in an Optical Dipole Trap[J]. Chin. Phys. Lett., 2021, 38(5): 036101
[8] Tianyu Li, Yong-Sheng Zhang, and Wei Yi. Two-Dimensional Quantum Walk with Non-Hermitian Skin Effects[J]. Chin. Phys. Lett., 2021, 38(3): 036101
[9] Qijin Chen, Jibiao Wang, Lin Sun, Yi Yu. Unusual Destruction and Enhancement of Superfluidity of Atomic Fermi Gases by Population Imbalance in a One-Dimensional Optical Lattice[J]. Chin. Phys. Lett., 2020, 37(5): 036101
[10] Xue-Jing Feng, Lan Yin. Phase Diagram of a Spin-Orbit Coupled Dipolar Fermi Gas at T=0K[J]. Chin. Phys. Lett., 2020, 37(2): 036101
[11] Wei Qi, Ming-Cheng Liang, Han Zhang, Yu-Dong Wei, Wen-Wei Wang, Xu-Jie Wang, Xibo Zhang. Experimental Realization of Degenerate Fermi Gases of $^{87}$Sr Atoms with 10 or Two Spin Components[J]. Chin. Phys. Lett., 2019, 36(9): 036101
[12] Xiao-Bin Ma, Zhu-Xiong Ye, Li-Yang Xie, Zhen Guo, Li You, Meng Khoon Tey. Measurement of S-Wave Scattering Length between $^6$Li and $^{88}$Sr Atoms Using Interspecies Thermalization in an Optical Dipole Trap[J]. Chin. Phys. Lett., 2019, 36(7): 036101
[13] Zhenlian Shi, Ziliang Li, Pengjun Wang, Zengming Meng, Lianghui Huang, Jing Zhang. Sub-Doppler Laser Cooling of $^{23}$Na in Gray Molasses on the $D_{2}$ Line[J]. Chin. Phys. Lett., 2018, 35(12): 036101
[14] Tian-You Gao, Dong-Fang Zhang, Ling-Ran Kong, Rui-Zong Li, Kai-Jun Jiang. Observation of Atomic Dynamic Behaviors in the Evaporative Cooling by In-Situ Imaging the Plugged Hole of Ultracold Atoms[J]. Chin. Phys. Lett., 2018, 35(8): 036101
[15] Ya-Hui Wang, Zhong-Qi Ma. Spin-1/2 Fermion Gas in One-Dimensional Harmonic Trap with Attractive Delta Function Interaction[J]. Chin. Phys. Lett., 2017, 34(2): 036101
Viewed
Full text


Abstract