Chin. Phys. Lett.  2024, Vol. 41 Issue (3): 034201    DOI: 10.1088/0256-307X/41/3/034201
FUNDAMENTAL AREAS OF PHENOMENOLOGY(INCLUDING APPLICATIONS) |
An LED-Side-Pumped Intracavity Frequency-Doubled Nd,Ce:YAG Laser Producing a 2 W Q-Switched Red Beam
Jianping Shen1*, Shaocong Xu1*, Peng LU1, Rongrong Jiang1, Wei Wang2, Siwei Zhang2, Fengyang Xing2, Yang Chen1, and Liang Chen1
1College of Electronic and Optical Engineering & College of Flexible Electronics, Nanjing University of Posts and Telecommunications, Nanjing 210046, China
2Laser Institute, Qilu University of Technology (Shandong Academy of Sciences), Qingdao 266000, China
Cite this article:   
Jianping Shen, Shaocong Xu, Peng LU et al  2024 Chin. Phys. Lett. 41 034201
Download: PDF(8033KB)   PDF(mobile)(8055KB)   HTML
Export: BibTeX | EndNote | Reference Manager | ProCite | RefWorks
Abstract We report a high-average-power acousto-optic (AO) Q-switched intracavity frequency-doubled red laser based on a high-efficiency light-emitting-diode (LED) pumped two-rod Nd,Ce:YAG laser module. Under quasi-continuous wave operation conditions, a maximum output power of 1319.08 nm wavelength was achieved at 11.26 W at a repetition rate of 100 Hz, corresponding to a maximum optical efficiency of 13.9% and a slope efficiency of 17.9%. In the active Q-switched regime, the pulse energy of the laser was as high as 800 µJ at a repetition rate of 10 kHz with a pulse width of 1.5 µs. Under non-critical phase-matched KTP crystal conditions, an average power of 2.03 W of 658.66 nm through intracavity frequency-doubling was obtained at a repetition frequency of 10 kHz with a duration of 1.3 µs, and the $M^{2}$ factor was measured to be about 5.8. To the best of our knowledge, this is the highest average power of an LED-pumped AO Q-switched 1319 nm laser and intracavity frequency-doubled red laser reported to date.
Received: 29 December 2023      Published: 25 March 2024
PACS:  42.55.-f (Lasers)  
  42.60.Gd (Q-switching)  
  42.65.-k (Nonlinear optics)  
  42.55  
  42.60.By (Design of specific laser systems)  
TRENDMD:   
URL:  
https://cpl.iphy.ac.cn/10.1088/0256-307X/41/3/034201       OR      https://cpl.iphy.ac.cn/Y2024/V41/I3/034201
Service
E-mail this article
E-mail Alert
RSS
Articles by authors
Jianping Shen
Shaocong Xu
Peng LU
Rongrong Jiang
Wei Wang
Siwei Zhang
Fengyang Xing
Yang Chen
and Liang Chen
[1] Wang X, Yao C F, Li P X, Yang L J, Ren G C, Wu Y J, and Wang C 2021 IEEE Photonics Technol. Lett. 33 1301
[2] Meng X C, Li L, Sun N Z, Xue Z, Liu Q, Ye H, and Liu W J 2023 Chin. Phys. Lett. 40 124202
[3] Xiao Y J, Xing X W, Cui W W, Chen Y Q, Zhou Q, and Liu W J 2023 Chin. Phys. Lett. 40 054201
[4] Peng H, Hou W, Chen Y et al. 2006 Opt. Express 14 3961
[5] Li X P, Yang J, Zhang M S et al. 2022 Chin. Phys. B 31 084207
[6] Délen X, Aubourg A, Deyra L et al. 2015 Proc. SPIE 9342 934202
[7] Villars B, Hil E S, Durfee C G et al. 2015 Opt. Lett. 40 3049
[8] Moghtader Dindarlu M H, Kavosh Tehrani M, Saghafifar H et al. 2015 Chin. Phys. B 24 124205
[9] Tarkashvand M, Farahbod A H, and Hashemizadeh S A 2018 Laser Phys. 28 055801
[10] Saruwatari M, Kimura T, Yamada T et al. 1975 Appl. Phys. Lett. 27 682
[11] Wu M Y, Qu P F, Wang S Y et al. 2018 Chin. Phys. B 27 094207
[12] Peng H P, Yang C, Lu S et al. 2019 Chin. Phys. B 28 024205
[13] Xiao H, Zhao T, Ge W et al. 2019 Crystals 9 201
[14] Shen J P, Huang X, Jiang S T et al. 2022 Chin. Phys. Lett. 39 104201
[15] Shen J P, Huang X, Xu S C et al. 2023 IEEE Photonics Technol. Lett. 35 721
[16] Cho C Y et al. 2017 Opt. Lett. 42 2394
[17] Song Z X, Bian Q, Shen Y et al. 2022 Chin. Phys. B 31 054208
[18] Wang Y Y, Nie G, Hu C H et al. 2022 Chin. Phys. B 31 024204
Related articles from Frontiers Journals
[1] Gangyi Zhu, Mufei Tian, M. Almokhtar, Feifei Qin, Binghui Li, Mengyao Zhou, Fei Gao, Ying Yang, Xin Ji, Siqing He, and Yongjin Wang. Whispering Gallery Mode Lasing Performance's Evolution of Floating GaN Microdisks Varying with Their Thickness[J]. Chin. Phys. Lett., 2022, 39(12): 034201
[2] Jianping Shen, Xin Huang, Songtao Jiang, Rongrong Jiang, Huiyin Wang, Peng Lu, Shaocong Xu, and Mingyu Jiao. Design and Development of a High-Performance LED-Side-Pumped Nd:YAG Rod Laser[J]. Chin. Phys. Lett., 2022, 39(10): 034201
[3] Xin Ni, Kunpeng Jia, Xiaohan Wang, Huaying Liu, Jian Guo, Shu-Wei Huang, Baicheng Yao, Nicolò Sernicola, Zhenlin Wang, Xinjie Lv, Gang Zhao, Zhenda Xie, and Shi-Ning Zhu. Broadband Sheet Parametric Oscillator for $\chi^{(2)}$ Optical Frequency Comb Generation via Cavity Phase Matching[J]. Chin. Phys. Lett., 2021, 38(6): 034201
[4] Jian-Wang Jiang, Shao-Bo Fang, Zi-Yue Zhang, Jiang-Feng Zhu, Hai-Nian Han, Guo-Qing Chang, Zhi-Yi Wei. Monolithic 0–f Scheme-Based Frequency Comb Directly Driven by a High-Power Ti:Sapphire Oscillator[J]. Chin. Phys. Lett., 2020, 37(5): 034201
[5] Fang-Jin Ning, Zhi-Yong Li, Rong-Qing Tan, Lie-Mao Hu, Song-Yang Liu. Diode Pumped Rubidium Laser Based on Etalon Effects of Alkali Cell Windows[J]. Chin. Phys. Lett., 2020, 37(3): 034201
[6] Qiu-Run He, Jing Guo, Bao-Fu Zhang, Zhong-Xing Jiao. High-Repetition-Rate and High-Beam-Quality Laser Pulses with 1.5MW Peak Power Generation from a Two-Stage Nd:YVO$_{4}$ Amplifier[J]. Chin. Phys. Lett., 2019, 36(11): 034201
[7] H. Ahmad, M. F. Ismail, S. N. Aidit. Optically Modulated Tunable O-Band Praseodymium-Doped Fluoride Fiber Laser Utilizing Multi-Walled Carbon Nanotube Saturable Absorber[J]. Chin. Phys. Lett., 2019, 36(10): 034201
[8] Li-Jiao He, Ke Liu, Nan Zong, Zhao Liu, Zhi-Min Wang, Yong Bo, Xiao-Jun Wang, Qin-Jun Peng, Da-Fu Cui, Zu-Yan Xu. A High Conversion Efficiency Q-Switched Intracavity Nd:YVO$_{4}$/KTA Optical Parametric Oscillator under Direct Diode Pumping at 880nm[J]. Chin. Phys. Lett., 2019, 36(4): 034201
[9] Wei Zhang, Zhi Wei, Yi-Bin Wang, Guang-Yong Jin. The Process of a Laser-Supported Combustion Wave Induced by Millisecond Pulsed Laser on Aluminum Alloy[J]. Chin. Phys. Lett., 2016, 33(01): 034201
[10] LIU Yang, LIU Zhao-Jun, CONG Zhen-Hua, MEN Shao-Jie, XIA Jin-Bao, RAO Han, ZHANG Sa-Sa. Efficient Diode-End-Pumped Actively Q-Switched Nd:YLF/SrWO4 Raman Laser[J]. Chin. Phys. Lett., 2015, 32(12): 034201
[11] MAO Ye-Fei, ZHANG Heng-Li, SANG Si-Han, ZHANG Xin, YU Xi-Long, XING Ji-Chuan, XIN Jian-Guo, JIANG Yi. High-Power Continuous-Wave Nd:GdVO4 Solid-State Laser Dual-End-Pumped at 880 nm[J]. Chin. Phys. Lett., 2015, 32(09): 034201
[12] ZENG Xiang-Mei. Focusing Properties of Partially Coherent Controllable Dark-Hollow Beams through a Thin Lens[J]. Chin. Phys. Lett., 2015, 32(07): 034201
[13] ZHANG Yu-Xia, WANG Shu-Xian, Alberto Di Lieto, YU Guo-Lei, YU Hao-Hai, ZHANG Huai-Jin, Mauro Tonelli, XU Xian-Gang, WANG Ji-Yang. Temperature-Dependent Fluorescence Properties and Diode-Pumped Deep Red Laser Performance of Pr:LiGdF4 Crystal[J]. Chin. Phys. Lett., 2015, 32(5): 034201
[14] ZHUANG Wei, ZHANG Tong-Gang, CHEN Jing-Biao. An Active Ion Optical Clock[J]. Chin. Phys. Lett., 2014, 31(09): 034201
[15] MAO Ye-Fei, ZHANG Heng-Li, XU Liu, DENG Bo, XING Ji-Chuan, XIN Jian-Guo, JIANG Yi. An 880-nm Laser-Diode End-Pumped Nd:YVO4 Slab Laser with a Hybrid Resonator[J]. Chin. Phys. Lett., 2014, 31(07): 034201
Viewed
Full text


Abstract