Chin. Phys. Lett.  2024, Vol. 41 Issue (3): 031201    DOI: 10.1088/0256-307X/41/3/031201
THE PHYSICS OF ELEMENTARY PARTICLES AND FIELDS |
Analysis of Strong Coupling Constant with Machine Learning and Its Application
Xiao-Yun Wang1,2*, Chen Dong1, and Xiang Liu3,4,2,5,6*
1Department of Physics, Lanzhou University of Technology, Lanzhou 730050, China
2Lanzhou Center for Theoretical Physics, Key Laboratory of Theoretical Physics of Gansu Province, Lanzhou University, Lanzhou 730000, China
3School of Physical Science and Technology, Lanzhou University, Lanzhou 730000, China
4Research Center for Hadron and CSR Physics, Lanzhou University and Institute of Modern Physics, Chinese Academy of Sciences, Lanzhou 730000, China
5MoE Frontiers Science Center for Rare Isotopes, Lanzhou University, Lanzhou 730000, China
6Key Laboratory of Quantum Theory and Applications of MoE, Lanzhou University, Lanzhou 730000, China
Cite this article:   
Xiao-Yun Wang, Chen Dong, and Xiang Liu 2024 Chin. Phys. Lett. 41 031201
Download: PDF(1154KB)   PDF(mobile)(1174KB)   HTML
Export: BibTeX | EndNote | Reference Manager | ProCite | RefWorks
Abstract We investigate the nature of the strong coupling constant and related physics. Through the analysis of accumulated experimental data around the world, we employ the ability of machine learning to unravel its physical laws. The result of our efforts is a formula that captures the expansive panorama of the distribution of the strong coupling constant across the entire energy range. Importantly, this newly derived expression is very similar to the formula derived from the Dyson–Schwinger equations based on the framework of Yang–Mills theory. By introducing the Euler number $e$ into the functional formula of the strong coupling constant at high energies, we successfully solve the puzzle of the infrared divergence, which allows for a seamless transition of the strong coupling constant from the perturbative to the non-perturbative energy regime. Moreover, the obtained ghost and gluon dressing function distribution results confirm that the obtained strong coupling constant formula can well describe the physical properties of the non-perturbed regime. In addition, we study the quantum-chromodynamics strong coupling constant result of the Bjorken sum rule $\varGamma_1^{p-n}$ and the quark–quark static energy $E_0(r)$, and find that the global energy scale can effectively interpret the experimental data. The present results shed light on the puzzling properties of quantum chromodynamics and the intricate interplay of strong coupling constants at both low and high energy scales.
Received: 30 January 2024      Editors' Suggestion Published: 14 March 2024
PACS:  03.67.Lx (Quantum computation architectures and implementations)  
  03.67.-a (Quantum information)  
  03.65.Yz (Decoherence; open systems; quantum statistical methods)  
  03.67.Pp (Quantum error correction and other methods for protection against decoherence)  
TRENDMD:   
URL:  
https://cpl.iphy.ac.cn/10.1088/0256-307X/41/3/031201       OR      https://cpl.iphy.ac.cn/Y2024/V41/I3/031201
Service
E-mail this article
E-mail Alert
RSS
Articles by authors
Xiao-Yun Wang
Chen Dong
and Xiang Liu
[1] Deur A, Brodsky S J, and Roberts C D 2024 Prog. Part. Nucl. Phys. 134 104081
[2] Wang X Y, Dong C, and Wang Q 2022 Phys. Rev. D 106 056027
[3] Wang X Y, Zeng F, Wang Q, and Zhang L 2023 Sci. Chin. Phys. Mech. & Astron. 66 232012
[4] Blumlein J and Botts J 1994 Phys. Lett. B 325 190
[5] Gross D J and Wilczek F 1973 Phys. Rev. Lett. 30 1343
[6] Politzer H D 1973 Phys. Rev. Lett. 30 1346
[7]Gross D J, Wilczek F, and Politzer H D 2004 https://www.nobelprize.org/prizes/physics/2004/gross/facts/
[8] Weinberg S 2005 The Quantum Theory of Fields (Cambridge: Cambridge University Press) vol 1–3
[9] Deur A, Brodsky S J, and de Teramond G F 2016 Prog. Part. Nucl. Phys. 90 1
[10] Grunberg G 1980 Phys. Lett. B 95 70
[11] Grunberg G 1984 Phys. Rev. D 29 2315
[12] Deur A, Shen J M, Wu X G, Brodsky S J, and de Teramond G F 2017 Phys. Lett. B 773 98
[13] Brodsky S J, Pauli H C, and Pinsky S S 1998 Phys. Rep. 301 299
[14] Gribov V N 1978 Nucl. Phys. B 139 1
[15] Brodsky S J, de Teramond G F, and Deur A 2010 Phys. Rev. D 81 096010
[16] Zwanziger D 1982 Nucl. Phys. B 209 336
[17] Zwanziger D 1981 Nucl. Phys. B 192 259
[18] Stefanis N G 2013 Phys. Part. Nucl. 44 494
[19] Shirkov D V and Solovtsov I L 1996 arXiv:hep-ph/9604363 [hep-ph]
[20] Alekseev A I 2003 Few-Body Syst. 32 193
[21] Narison S 2018 Int. J. Mod. Phys. A 33 1850045
[22] Braaten E, Narison S, and Pich A 1992 Nucl. Phys. B 373 581
[23] Deur A, Burkert V, Chen J P, and Korsch W 2008 Phys. Lett. B 665 349
[24] Deur A, Burkert V, Chen J P, and Korsch W 2022 Particles 5 171
[25] Deur A, Chen J P, Kuhn S E, Peng C, Ripani M, Sulkosky V, Adhikari K, Battaglieri M, Burkert V D, and Cates G D et al. 2022 Phys. Lett. B 825 136878
[26] Kim J H, Harris D A, Arroyo C G, de Barbaro L, de Barbaro P, Bazarko A O, Bernstein R H, Bodek A, Bolton T, Budd H S et al. 1998 Phys. Rev. Lett. 81 3595
[27] Ackerstaff K et al. 1997 Phys. Lett. B 404 383
[28] Ackerstaff K et al. 1998 Phys. Lett. B 444 531
[29] Airapetian A et al. 1998 Phys. Lett. B 442 484
[30] Airapetian A et al. 2003 Phys. Rev. Lett. 90 092002
[31] Airapetian A et al. 2007 Phys. Rev. D 75 012007
[32] Yu Q, Zhou H, Huang X D, Shen J M, and Wu X G 2022 Chin. Phys. Lett. 39 071201
[33] Deur A, Burkert V, Chen J P, and Korsch W 2007 Phys. Lett. B 650 244
[34] Bjorken J D 1966 Phys. Rev. 148 1467
[35] Bjorken J D 1970 Phys. Rev. D 1 1376
[36] Deur A 2009 AIP Conf. Proc. 1155 112
[37] Deur A 2009 AIP Conf. Proc. 1149 281
[38] Ayala C, Cvetič G, Kotikov A V, and Shaikhatdenov B G 2018 Eur. Phys. J. C 78 1002
[39] Abe K et al. 1998 Phys. Rev. D 58 112003
[40] Deur A, Bosted P E, Burkert V, Cates G, Chen J P, Choi S, Crabb D, de Jager C W, De Vita R, Dodge G E et al. 2004 Phys. Rev. Lett. 93 212001
[41] Deur A, Bosted P, Burkert V, Crabb D, Dharmawardane V, Dodge G E, Forest T A, Griffioen K A, Kuhn S E, Minehart R et al. 2008 Phys. Rev. D 78 032001
[42] Stein E, Gornicki P, Mankiewicz L, and Schafer A 1995 Phys. Lett. B 353 107
[43] Balitsky I I, Braun V M, and Kolesnichenko A V 1990 Phys. Lett. B 242 245
[44] Sidorov A V and Weiss C 2006 Phys. Rev. D 73 074016
[45] Ananthanarayan B, Das D, and Alam Khan M S A 2020 Phys. Rev. D 102 076008
[46] Tormo X G I 2013 Mod. Phys. Lett. A 28 1330028
[47] Bazavov A, Bhattacharya T, Cheng M et al. 2012 Phys. Rev. D 85 054503
[48] Necco S and Sommer R 2002 Nucl. Phys. B 622 328
[49] Bazavov A, Brambilla N, Garcia i Tormo X, Petreczky P, Soto J, and Vairo A 2012 Phys. Rev. D 86 114031
[50] Michael C 1992 Phys. Lett. B 283 103
[51]Ampère A M 1820 Memoirs of the French Academy of Sciences 6 837
[52] Øersted H C 1820 Ann. Philos. 16 273
[53]Maxwell J C 1861 Philos. Trans. R. Soc. London 151 459
[54] Maxwell J C 1865 Philos. Trans. R. Soc. London 155 459
[55] Plank M 1901 Ann. Phys. (Leipzig) 4 553
[56] Boltzmann L 1896 Ann. Phys. (Leipzig) 57 773
[57] Liu Z M and Tegmark M 2021 Phys. Rev. Lett. 126 180604
[58] Liu Z M, Madhavan V, and Tegmark M 2022 Phys. Rev. E 106 045307
[59] Udrescu S M and Tegmark M 2020 Sci. Adv. 6 eaay2631
[60] Udrescu S M, Tan A, Feng J, Neto O, Wu T, and Tegmark M 2020 arXiv:2006.10782 [cs.LG]
[61] Tenachi W, Rodrigo I, and Diakogiannis F I 2023 Astrophys. J. 959 99
[62]Stevens E, Antiga L, and Viehmann T 2020 Deep Learning with PyTorch (Greenwich: Manning Publications)
[63] Liu Z and Tegmark M 2022 Phys. Rev. Lett. 128 180201
[64] Deur A, Brodsky S J, and de Teramond G F 2015 Phys. Lett. B 750 528
[65] Begel M, Hoeche S, Schmitt M et al. 2022 arXiv: 2209.14872 [hep-ph]
[66] Bethke S and Wagner A 2022 Eur. Phys. J. H 47 16
[67] Aoki Y et al. 2022 Eur. Phys. J. C 82 869
[68] Fischer C S and Alkofer R 2002 Phys. Lett. B 536 177
[69] Prosperi G M, Raciti M, and Simolo C 2007 Prog. Part. Nucl. Phys. 58 387
[70] Shen J M, Qin B H, Yan J, Wang S Q, and Wu X G 2023 J. High Energy Phys. 2023(07) 109
[71] Chatrchyan S et al. 2013 Eur. Phys. J. C 73 2604
[72] Matsuda M and Suzuki T B 1996 Phys. Lett. B 380 371
[73] Ayala C and Pineda A 2022 Phys. Rev. D 106 056023
[74]Zyla P A et al. 2020 Prog. Theor. Exp. Phys. 2020 083
[75] Bazavov A, Brambilla N, Garcia i Tormo X, Petreczky P, Soto J, and Vairo A 2014 Phys. Rev. D 90 074038
[76] Bazavov A et al. 2019 Phys. Rev. D 100 114511
Related articles from Frontiers Journals
[1] Yiwen Han and Wei Yi. Tuning Excitation Transport in a Dissipative Rydberg Ring[J]. Chin. Phys. Lett., 2024, 41(3): 031201
[2] Ke-Fan Wu, Hu Zhang, and Gui-Hua Tang. Experimental Investigation of the Anisotropic Thermal Conductivity of C/SiC Composite Thin Slab[J]. Chin. Phys. Lett., 2024, 41(3): 031201
[3] Qi-Hang Yu and Zi-Jing Lin. Solving Quantum Many-Particle Models with Graph Attention Network[J]. Chin. Phys. Lett., 2024, 41(3): 031201
[4] Bo Li, Xu-Tao Zeng, Qianhui Xu, Fan Yang, Junsen Xiang, Hengyang Zhong, Sihao Deng, Lunhua He, Juping Xu, Wen Yin, Xingye Lu, Huiying Liu, Xian-Lei Sheng, and Wentao Jin. C-Type Antiferromagnetic Structure of Topological Semimetal CaMnSb$_2$[J]. Chin. Phys. Lett., 2024, 41(3): 031201
[5] Pan-Pan Shi, Vadim Baru, Feng-Kun Guo, Christoph Hanhart, and Alexey Nefediev. Production of the $X(4014)$ as the Spin-2 Partner of $X(3872)$ in $e^+e^-$ Collisions[J]. Chin. Phys. Lett., 2024, 41(3): 031201
[6] Jianzhi Chen, Aoqian Shi, Yuchen Peng, Peng Peng, and Jianjun Liu. Hybrid Skin-Topological Effect Induced by Eight-Site Cells and Arbitrary Adjustment of the Localization of Topological Edge States[J]. Chin. Phys. Lett., 2024, 41(3): 031201
[7] John Paul Strachan. Unleashing the Power of Moiré Materials in Neuromorphic Computing[J]. Chin. Phys. Lett., 2023, 40(12): 031201
[8] Xiaozhou Pan, Pengtao Song, and Yvonne Y. Gao. Continuous-Variable Quantum Computation in Circuit QED[J]. Chin. Phys. Lett., 2023, 40(11): 031201
[9] Z. T. Wang, Peng Zhao, Z. H. Yang, Ye Tian, H. F. Yu, and S. P. Zhao. Escaping Detrimental Interactions with Microwave-Dressed Transmon Qubits[J]. Chin. Phys. Lett., 2023, 40(7): 031201
[10] Jierong Huo, Zezhou Xia, Zonglin Li, Shan Zhang, Yuqing Wang, Dong Pan, Qichun Liu, Yulong Liu, Zhichuan Wang, Yichun Gao, Jianhua Zhao, Tiefu Li, Jianghua Ying, Runan Shang, and Hao Zhang. Gatemon Qubit Based on a Thin InAs-Al Hybrid Nanowire[J]. Chin. Phys. Lett., 2023, 40(4): 031201
[11] Changhao Zhao, Yongcheng He, Xiao Geng, Kaiyong He, Genting Dai, Jianshe Liu, and Wei Chen. Multi-Mode Bus Coupling Architecture of Superconducting Quantum Processor[J]. Chin. Phys. Lett., 2023, 40(1): 031201
[12] Wen Zheng, Jianwen Xu, Zhuang Ma, Yong Li, Yuqian Dong, Yu Zhang, Xiaohan Wang, Guozhu Sun, Peiheng Wu, Jie Zhao, Shaoxiong Li, Dong Lan, Xinsheng Tan, and Yang Yu. Measuring Quantum Geometric Tensor of Non-Abelian System in Superconducting Circuits[J]. Chin. Phys. Lett., 2022, 39(10): 031201
[13] Zhi-Jin Tao, Li-Geng Yu, Peng Xu, Jia-Yi Hou, Xiao-Dong He, and Ming-Sheng Zhan. Efficient Two-Dimensional Defect-Free Dual-Species Atom Arrays Rearrangement Algorithm with Near-Fewest Atom Moves[J]. Chin. Phys. Lett., 2022, 39(8): 031201
[14] Lu-Ji Wang, Jia-Yi Lin, and Shengjun Wu. State Classification via a Random-Walk-Based Quantum Neural Network[J]. Chin. Phys. Lett., 2022, 39(5): 031201
[15] Qi Zhang and Guang-Ming Zhang. Noise-Induced Entanglement Transition in One-Dimensional Random Quantum Circuits[J]. Chin. Phys. Lett., 2022, 39(5): 031201
Viewed
Full text


Abstract