GEOPHYSICS, ASTRONOMY, AND ASTROPHYSICS |
|
|
|
|
Exploring Sulfur Chemistry in TMC-1 with NSRT |
Wasim Iqbal1,2*, Xiaohu Li1,2,3*, Juan Tuo1,4, Ryszard Szczerba1,2,5, Yanan Feng1,4, Zhenzhen Miao1,2, Jiangchao Yang1,4, Jixing Ge1,2, Gleb Fedoseev1,2,6, Donghui Quan7,1, Qiang Chang8, Chuan-Lu Yang1,9, Tao Yang1,10, Gao-Lei Hou11, Yong Zhang1,12,13, Xuan Fang1,14,13, Xia Zhang1,2, Fangfang Li1,2,4, Rong Ma1,4, Xiaomin Song1,4, Zhiping Kou1,4, and Yuxuan Sun1,4 |
1Xinjiang Astronomical Observatory, Chinese Academy of Sciences, Urumqi 830011, China 2Xinjiang Key Laboratory of Radio Astrophysics, Urumqi 830011, China 3Key Laboratory of Radio Astronomy, Chinese Academy of Sciences, Nanjing 210008, China 4University of Chinese Academy of Sciences, Beijing 100049, China 5Nicolaus Copernicus Astronomical Center, Rabiańska 8, 87-100 Toruń, Poland 6Research Laboratory for Astrochemistry, Ural Federal University, Kuibysheva St. 48, 620026 Ekaterinburg, Russia 7Astronomical Computing Research Center, Zhejiang Laboratory, Hangzhou 311100, China 8School of Physics and Optoelectronic Engineering, Shandong University of Technology, Zibo 255000, China 9School of Physics and Optoelectronic Engineering, Ludong University, Yantai 264025, China 10State Key Laboratory of Precision Spectroscopy, East China Normal University, Shanghai 200062, China 11MOE Key Laboratory for Non-Equilibrium Synthesis and Modulation of Condensed Matter, School of Physics, Xi'an Jiaotong University, Xi'an 710049, China 12School of Physics and Astronomy, Sun Yat-sen University, Guangzhou 510275, China 13Laboratory for Space Research, Faculty of Science, The University of Hong Kong, Hong Kong, China 14National Astronomical Observatories, Chinese Academy of Sciences, Beijing 100012, China
|
|
Cite this article: |
Wasim Iqbal, Xiaohu Li, Juan Tuo et al 2024 Chin. Phys. Lett. 41 029501 |
|
|
Abstract There have been several studies on sulfur depletion in dense cores like TMC-1 (Taurus Molecular Cloud 1), employing updated reaction networks for sulfur species to explain the missing sulfur in the gas within dense clouds. Most of these studies used a C/O ratio of 0.7 or lower. We present NSRT (NanShan 26m Radio Telescope) observations of TMC-1 alongside results from time-dependent chemical simulations using an updated chemical network. Our findings highlight the impact of the C/O ratio on the gas-phase evolution of C$_2$S and C$_3$S. The simulation results show that the C/O ratio is an important parameter, playing a fundamental role in determining the gas-phase abundances of sulfur species in dense cores.
|
|
Received: 05 November 2023
Published: 01 February 2024
|
|
PACS: |
95.30.Ky
|
(Atomic and molecular data, spectra, and spectralparameters (opacities, rotation constants, line identification, oscillator strengths, gf values, transition probabilities, etc.))
|
|
98.35.Bd
|
(Chemical composition and chemical evolution)
|
|
95.85.-e
|
(Astronomical observations (additional primary heading(s) must be chosen with these entries to represent the astronomical objects and/or properties studied))
|
|
95.85.Bh
|
(Radio, microwave (>1 mm))
|
|
|
|
|
[1] | Jenkins E B 2009 arXiv:0905.3173 [astro-ph.GA] |
[2] | Rocha C M R, Roncero O, Bulut N, Zuchowski P, Navarro-Almaida D, Fuente A, Wakelam V, Loison J C, Roueff E, Goicoechea J R, Esplugues G, Beitia-Antero L, Caselli P, Lattanzi V, Pineda J, Le G R, Rodríguez-Baras M, and Riviere-Marichalar P 2023 arXiv:2307.00311 [astro-ph.GA] |
[3] | Laas J C and Caselli P 2019 arXiv:1903.01232 [astro-ph.GA] |
[4] | Vidal T H G, Loison J C, Jaziri A Y, Ruaud M, Gratier P, and Wakelam V 2017 arXiv:1704.01404 [astro-ph.GA] |
[5] | Howk J C, Sembach K R, and Savage B D 2006 arXiv:astro-ph/0508470 [astro-ph] |
[6] | Neufeld D A, Godard B, Gerin M, Pineau D F G, Bernier C, Falgarone E, Graf U U, Güsten R, Herbst E, Lesaffre P, Schilke P, Sonnentrucker P, and Wiesemeyer H 2015 arXiv:1502.05710 [astro-ph.GA] |
[7] | Palumbo M E, Tielens A G G M, and Tokunaga A T 1995 Astrophys. J. 449 674 |
[8] | Boogert A C A, Schutte W A, Helmich F P, Tielens A G G M, and Wooden D H 1997 Astron. Astrophys. 317 929 |
[9] | Ferrante R F, Moore M H, Spiliotis M M, and Hudson R L 2008 Astrophys. J. 684 1210 |
[10] | Loomis R A, Burkhardt A M, Shingledecker C N, Charnley S B, Cordiner M A, Herbst E, Kalenskii S, Lee K L K, Willis E R, Xue C, Remijan A J, McCarthy M C, and McGuire B A 2021 arXiv:2009.11900 [astro-ph.GA] |
[11] | Chen L F, Li D, Quan D, Zhang X, Chang Q, Li X, and Xiao L 2022 arXiv:2203.00174 [astro-ph.GA] |
[12] | https://splatalogue.online/advanced.php |
[13] | https://www.iram.fr/IRAMFR/GILDAS |
[14] | Kaifu N, Ohishi M, Kawaguchi K, Saito S, Yamamoto S, Miyaji T, Miyazawa K, Ishikawa S I, Noumaru C, Harasawa S, Okuda M, and Suzuki H 2004 Publ. Astron. Soc. Jpn. 56 69 |
[15] | Cernicharo J, Marcelino N, Agúndez M, Bermúdez C, Cabezas C, Tercero B, and Pardo J R 2020 arXiv:2009.07686 [astro-ph.GA] |
[16] | Suzuki H, Yamamoto S, Ohishi M, Kaifu N, Ishikawa S I, Hirahara Y, and Takano S 1992 Astrophys. J. 392 551 |
[17] | Wu G, Qiu K, Esimbek J, Zheng X, Henkel C, Li D, and Han X 2018 arXiv:1805.11242 [astro-ph.GA] |
[18] | Mangum J G and Shirley Y L 2015 arXiv:1501.01703 [astro-ph.IM] |
[19] | Caselli P, Walmsley C M, Zucconi A, Tafalla M, Dore L, and Myers P C 2002 arXiv:astro-ph/0109023 [astro-ph] |
[20] | Fehér O, Tóth L V, Ward-Thompson D, Kirk J, Kraus A, Pelkonen V M, Pintér S, and Zahorecz S 2016 arXiv:1603.05844 [astro-ph.GA] |
[21] | Ruaud M, Wakelam V, and Hersant F 2016 arXiv:1604.05216 [astro-ph.GA] |
[22] | Mondal S K, Iqbal W, Gorai P, Bhat B, Wakelam V, and Das A 2022 arXiv:2211.03066 [astro-ph.GA] |
[23] | https://kida.astrochem-tools.org/ |
[24] | Wakelam V and Herbst E 2008 arXiv:0802.3757 [astro-ph] |
[25] | Hincelin U, Wakelam V, Hersant F, Guilloteau S, Loison J C, Honvault P, and Troe J 2011 arXiv:1104.1530 [astro-ph.SR] |
[26] | Graedel T E, Langer W D, and Frerking M A 1982 Astrophys. J. Suppl. Ser. 48 321 |
|
|
Viewed |
|
|
|
Full text
|
|
|
|
|
Abstract
|
|
|
|
|