Chin. Phys. Lett.  2024, Vol. 41 Issue (2): 027402    DOI: 10.1088/0256-307X/41/2/027402
CONDENSED MATTER: ELECTRONIC STRUCTURE, ELECTRICAL, MAGNETIC, AND OPTICAL PROPERTIES |
Strong Anisotropic Order Parameters at All-Nitride Ferromagnet/Superconductor Interfaces
Qiao Jin1†, Meng Yang1,2†, Guozhu Song3, Nan Zhao3, Shengru Chen1,2, Haitao Hong1,2, Ting Cui1,2, Dongke Rong1,2, Qianying Wang1,2, Yiyan Fan1, Chen Ge1,2,4, Can Wang1,2,4, Jiachang Bi5, Yanwei Cao5, Liusuo Wu3, Shanmin Wang3, Kui-Juan Jin1,2,4*, Zhi-Gang Cheng1,4*, and Er-Jia Guo1,2*
1Beijing National Laboratory for Condensed Matter Physics, and Institute of Physics, Chinese Academy of Sciences, Beijing 100190, China
2Department of Physics & Center of Materials Science and Optoelectronics Engineering, University of Chinese Academy of Sciences, Beijing 100049, China
3Department of Physics, Southern University of Science and Technology, Shenzhen 518055, China
4Songshan Lake Materials Laboratory, Dongguan 523808, China
5Ningbo Institute of Materials Technology & Engineering, Chinese Academy of Sciences, Ningbo 315201, China
Cite this article:   
Qiao Jin, Meng Yang, Guozhu Song et al  2024 Chin. Phys. Lett. 41 027402
Download: PDF(3518KB)   PDF(mobile)(3869KB)   HTML
Export: BibTeX | EndNote | Reference Manager | ProCite | RefWorks
Abstract Proximity effects between superconductors and ferromagnets (SC/FM) hold paramount importance in comprehending the spin competition transpiring at their interfaces. This competition arises from the interplay between Cooper pairs and ferromagnetic exchange interactions. The proximity effects between transition metal nitrides (TMNs) are scarcely investigated due to the formidable challenges of fabricating high-quality SC/FM interfaces. We fabricated heterostructures comprising SC titanium nitride (TiN) and FM iron nitride (Fe$_{3}$N) with precise chemical compositions and atomically well-defined interfaces. The magnetoresistance of Fe$_{3}$N/TiN heterostructures shows a distinct magnetic anisotropy and strongly depends on the external perturbations. Moreover, the superconducting transition temperature $T_{\scriptscriptstyle{\rm C}}$ and critical field of TiN experience notable suppression when proximity to Fe$_{3}$N. We observe the intriguing competition of interfacial spin orientations near $T_{\scriptscriptstyle{\rm C}}$ ($\sim$ $1.25$ K). These findings not only add a new materials system for investigating the interplay between superconductor and ferromagnets, but also potentially provide a building block for future research endeavors and applications in the realms of superconducting spintronic devices.
Received: 15 November 2023      Published: 26 February 2024
PACS:  74.45.+c (Proximity effects; Andreev reflection; SN and SNS junctions)  
  73.40.-c (Electronic transport in interface structures)  
  74.25.Ha (Magnetic properties including vortex structures and related phenomena)  
  75.70.-i (Magnetic properties of thin films, surfaces, and interfaces)  
TRENDMD:   
URL:  
https://cpl.iphy.ac.cn/10.1088/0256-307X/41/2/027402       OR      https://cpl.iphy.ac.cn/Y2024/V41/I2/027402
Service
E-mail this article
E-mail Alert
RSS
Articles by authors
Qiao Jin
Meng Yang
Guozhu Song
Nan Zhao
Shengru Chen
Haitao Hong
Ting Cui
Dongke Rong
Qianying Wang
Yiyan Fan
Chen Ge
Can Wang
Jiachang Bi
Yanwei Cao
Liusuo Wu
Shanmin Wang
Kui-Juan Jin
Zhi-Gang Cheng
and Er-Jia Guo
[1] Bhattacharyya S 2015 J. Phys. Chem. C 119 1601
[2] Mei A B, Hellman O, Wireklint N, Schlepütz C M, Sangiovanni D G, Alling B, Rockett A, Hultman L, Petrov I, and Greene J E 2015 Phys. Rev. B 91 054101
[3] Coey J M D and Smith P A I 1999 J. Magn. Magn. Mater. 200 405
[4] Talley K R, Perkins C L, Brennecka G L, and Zakutayev A 2021 Science 374 1488
[5] Akiyama M, Kamohara T, Kano K, Takeuchi Y, and Kawahara N 2009 Adv. Mater. 21 593
[6] Gu Y, Jiang K, Wu X, and Hu J 2022 Chin. Phys. Lett. 39 097401
[7] Bai Y, Wang Z, Lei N, Muhammad W, Xiang L, Li Q, Lai H, Zhu Y, Wang W, Guo H, Yin L, Wu R, and Shen J 2022 Chin. Phys. Lett. 39 108501
[8] Ningthoujam R S and Gajbhiye N S 2015 Prog. Mater. Sci. 70 50
[9] Wang H, Li J, Li K, Lin Y, Chen J, Gao L, Xiao X, and Lee J M 2021 Chem. Soc. Rev. 50 1354
[10] Kim K H, Oh S, Fiagbenu M M A, Zheng J, Musavigharavi P, Kumar P, Trainor N, Aljarb A, Wan Y, Katti K, Song S, Kim G, Tang Z, Fu J H, Hakami M, Tung V, Redwing J M, Stach E A, Olsson III R H, and Jariwala D 2023 Nat. Nanotechnol. 18 1044
[11] Kim K H, Karpov I, Olsson III R H, and Jariwala D 2023 Nat. Nanotechnol. 18 422
[12] Ando F, Miyasaka Y, Li T, Ishizuka J, Arakawa T, Shiota Y, Yanase Y, and Ono T 2020 Nature 584 373
[13] Hou Y S, Nichele F, Chi H, Lodesani A, Wu Y, Ritter M F, Haxell D Z, Davydova M, Ilić S, Glezakou-Elbert O, Varambally A, Bergeret F S, Kamra A, Lee P A, and Moodera J S 2023 Phys. Rev. Lett. 131 027001
[14] Jeon K R, Kim J K, Yoon J, Jeon J C, Han H, Kontos T, and Parkin S S P 2022 Nat. Mater. 21 1008
[15] Jeon K R, Hazra B K, Kim J K, Jeon J C, Han H, Meyerheim H L, Cottet A, and Parkin S S P 2023 Nat. Nanotechnol. 18 747
[16] Mercaldo L V, Attanasio C, Coccorese C, Prischepa S L, and Salvato M 1996 Phys. Rev. B 53 14040
[17] Mühge T, Garif'yanov N N, Goryunov Y V, Khaliullin G G, Tagirov L R, Garifullin I A, and Zabel H 1996 Phys. Rev. Lett. 77 1857
[18] Deen P P, Yokaichiya F, de Santis A, Wildes A R, and Cucolo A M 2006 Phys. Rev. B 74 224414
[19] Giblin S R, Taylor J W, Duffy J A, Butchers M W, Utfeld C, Dugdale S B, Visani C, and Santamaria J 2012 Phys. Rev. Lett. 109 137005
[20] Satapathy D K, Uribe-Laverde M A, Marozau I, Malik V K, Das S, Wagner T, Marcelot C, Stahn J, Bruck S, Ruhm A, Macke S, Tietze T, Goering E, Frañó A, Kim J H, Wu M, Benckiser E, Keimer B, Devishvili A, Toperverg B P, Merz M, Schuppler S, and Bernhard C 2012 Phys. Rev. Lett. 108 197201
[21] Choudhary K and Garrity K 2022 npj Comput. Mater. 8 244
[22] Kroll P 2003 Phys. Rev. Lett. 90 125501
[23] Kardakova A, Finkel M, Morozov D, Kovalyuk V, An P, Dunscombe C, Tarkhov M, Klapwijk M T, and Goltsman G 2013 Appl. Phys. Lett. 103 252602
[24] Zou Y T, Jin Q, Wang Y X, Jiang K, Wang S M, Guo E J, and Cheng Z G 2022 Phys. Rev. B 105 224516
[25] Ajami F I and Maccrone R K 1975 J. Phys. Chem. Soilds 36 7
[26] Jin Q, Cheng H, Wang Z, Zhang Q, Lin S, Roldan M A, Zhao J L, Wang J O, Chen S, He M, Ge C, Wang C, Lu H B, Guo H Z, Gu L, Tong X, Zhu T, Wang S, Jin K J, and Guo E J 2021 Adv. Mater. 33 2005920
[27] Jin Q, Wang Z, Zhang Q, Zhao J L, Cheng H, Lin S, Chen S, Guo H Z, He M, Ge C, Wang C, Wang J O, Gu L, Wang S, Jin K J, and Guo E J 2021 Phys. Rev. Mater. 5 023604
[28] Jin Q, Zhao J L, Roldan M A, Qi W H, Lin S, Chen S, Hong H T, Fan Y Y, Rong D K, Guo H Z, Ge C, Wang C, Wang J O, Jin K J, and Guo E J 2022 Appl. Phys. Lett. 120 073103
[29] Jin Q, Zhang Q H, Bai H, Huon A, Charlton T, Chen S R, Lin S, Hong H T, Cui T, Wang C, Guo H Z, Gu L, Zhu T, Fitzsimmons M R, Wang S M, and Guo E J 2023 Adv. Mater. 35 e2208221
[30] Jin Q, Zhang Q H, Bai H, Zou Y T, Ga Y L, Chen S R, Hong H T, Cui T, Rong D K, Wang J O, Wang C, Cao Y W, Gu L, Wang S M, Jiang K, Cheng Z G, Zhu T, Jin K J, and Guo E J 2023 arXiv:2304.05234 [cond-mat.supr-con]
[31] Zhang R Y, Li X Y, Meng F Q, Bi J C, Zhang S D, Peng S Q, Sun J, Wang X M, Wu L, Duan J X, Cao H T, Zhang Q H, Huang L H, and Cao Y W 2021 ACS Appl. Mater. & Interfaces 13 60182
[32] Zhang R Y, Ma Q Y, Liu H, Sun T Y, Bi J, Song Y, Peng S, Liang L, Gao J H, Huang L F, and Cao Y W 2021 ACS Photonics 8 847
[33] Yazdani A, Jones B A, Crommie M F, and Eigler D M 1997 Science 275 1767
[34] Smith R A and Ambegaokar V 2000 Phys. Rev. B 62 5913
[35] Katano S, Shibata K, and Matsubara Y 2017 Phys. Rev. B 95 144502
[36] Santhanam P, Chi C C, Wind S J, and Bucchignano J J 1991 Phys. Rev. Lett. 66 2254
[37] Park M and Parpia J M 1997 Phys. Rev. B 55 9067
[38] Wang H, Rosaria M M, and Liu Y 2007 Phys. Rev. B 75 064509
[39] Zhang G F, Zeleznik M, May P W, and Moshchalkov V V 2013 Phys. Rev. Lett. 110 077001
[40] Zhang G F, Samuely T, Kačmarčík J, Ekimov E A, Li J, Vanacken J, Szabó P, Huang J, Cerbu D, and Moshchalkov V V 2016 Phys. Rev. Appl. 6 064011
[41] Werthamer N R, Helfand E, and Hohenberg P C 1966 Phys. Rev. 147 295
[42] Tao Q, Shen J Q, Li L J, Lin X, Luo Y K, and Xu Z A 2009 Chin. Phys. Lett. 26 097401
[43] Guo E J, Desautels R, Lee D, Roldan M A, Liao Z L, Charlton T, Ambaye H, Molaison J, Boehler R, Keavney D, Herklotz A, Ward T Z, and Fitzsimmons M R 2019 Phys. Rev. Lett. 122 187202
[44] Guo E J and Zhu T 2019 Physics 48 708 (in Chinese)
Related articles from Frontiers Journals
[1] Xiao-Ting Chen, Chun-Hui Liu, Dong-Hui Xu, and Chui-Zhen Chen. Majorana Corner Modes and Flat-Band Majorana Edge Modes in Superconductor/Topological-Insulator/Superconductor Junctions[J]. Chin. Phys. Lett., 2023, 40(9): 027402
[2] Ming-Li Liu, Dong Pan, Tian Le, Jiang-Bo He, Zhong-Mou Jia, Shang Zhu, Guang Yang, Zhao-Zheng Lyu, Guang-Tong Liu, Jie Shen, Jian-Hua Zhao, Li Lu, and Fan-Ming Qu. Gate-Tunable Negative Differential Conductance in Hybrid Semiconductor–Superconductor Devices[J]. Chin. Phys. Lett., 2023, 40(6): 027402
[3] Xiang Zhang, Zhaozheng Lyu, Guang Yang, Bing Li, Yan-Liang Hou, Tian Le, Xiang Wang, Anqi Wang, Xiaopei Sun, Enna Zhuo, Guangtong Liu, Jie Shen, Fanming Qu, and Li Lu. Anomalous Josephson Effect in Topological Insulator-Based Josephson Trijunction[J]. Chin. Phys. Lett., 2022, 39(1): 027402
[4] Wei-Xiong Wu, Yang Feng, Yun-He Bai, Yu-Ying Jiang, Zong-Wei Gao, Yuan-Zhao Li, Jian-Li Luan, Heng-An Zhou, Wan-Jun Jiang, Xiao Feng, Jin-Song Zhang, Hao Zhang, Ke He, Xu-Cun Ma, Qi-Kun Xue, and Ya-Yu Wang. Gate Tunable Supercurrent in Josephson Junctions Based on Bi$_{2}$Te$_{3}$ Topological Insulator Thin Films[J]. Chin. Phys. Lett., 2021, 38(3): 027402
[5] Hai Zi, Ling-Xiao Zhao, Xing-Yuan Hou, Lei Shan, Zhian Ren, Gen-Fu Chen, and Cong Ren. Pressure-Dependent Point-Contact Spectroscopy of Superconducting PbTaSe$_2$ Single Crystals[J]. Chin. Phys. Lett., 2020, 37(9): 027402
[6] Xin Shang, Hai-Wen Liu, Ke Xia. Charge Transport Properties of the Majorana Zero Mode Induced Noncollinear Spin Selective Andreev Reflection[J]. Chin. Phys. Lett., 2019, 36(10): 027402
[7] C. Chen, Q. Liu, T. Z. Zhang, D. Li, P. P. Shen, X. L. Dong, Z.-X. Zhao, T. Zhang, D. L. Feng. Quantized Conductance of Majorana Zero Mode in the Vortex of the Topological Superconductor (Li$_{0.84}$Fe$_{0.16}$)OHFeSe[J]. Chin. Phys. Lett., 2019, 36(5): 027402
[8] Lai-Lai Li, Yue-Lei Zhao, Xi-Xiang Zhang, Young Sun. Possible Evidence for Spin-Transfer Torque Induced by Spin-Triplet Supercurrents[J]. Chin. Phys. Lett., 2018, 35(7): 027402
[9] Ai-Min Li, Lu-Dong, Xin-Yi Yang, Zhen Zhu, Guan-Yong Wang, Dan-Dan Guan, Hao Zheng, Yao-Yi Li, Canhua Liu, Dong Qian, Jin-Feng Jia. Metastable Face-Centered Cubic Structure and Structural Transition of Sn on 2H-NbSe$_{2}$ (0001)[J]. Chin. Phys. Lett., 2018, 35(6): 027402
[10] Xing-Yuan Hou, Ya-Dong Gu, Zong Wang, Hai Zi, Xiang-De Zhu, Meng-Di Zhang , Chun-Hong Li, Cong Ren, Lei Shan. Proximity-Induced Superconductivity in New Superstructures on 2H-NbSe$_2$ Surface[J]. Chin. Phys. Lett., 2017, 34(7): 027402
[11] Lu-Bing Shao, Zi-Dan Wang, Rui Shen, Li Sheng, Bo-Gen Wang, Ding-Yu Xing. Controlling Fusion of Majorana Fermions in One-Dimensional Systems by Zeeman Field[J]. Chin. Phys. Lett., 2017, 34(6): 027402
[12] Bin-He Wu, Xu-Yu Feng, Chao Wang, Xiao-Feng Xu, Chun-Rui Wang. Anomalous Direct-Current Josephson Effect in Semiconductor Nanowire Junctions$^{*}$[J]. Chin. Phys. Lett., 2016, 33(01): 027402
[13] WU Bin-He, CHENG Xiao, WANG Chun-Rui, GONG Wei-Jiang. Probing Majorana Bound States in T-Shaped Junctions[J]. Chin. Phys. Lett., 2014, 31(03): 027402
[14] PENG Lin, CAI Chuan-Bing, LIU Yong-Sheng. Observation of Dynamic Behavior in YBa2Cu3O7−δ/La0.88Ca0.12MnO3 Using Femtosecond Optical Pulses[J]. Chin. Phys. Lett., 2014, 31(2): 027402
[15] LI Xiao-Wei . Heat Transport in Graphene Ferromagnet-Insulator-Superconductor Junctions[J]. Chin. Phys. Lett., 2011, 28(4): 027402
Viewed
Full text


Abstract