Chin. Phys. Lett.  2024, Vol. 41 Issue (2): 027401    DOI: 10.1088/0256-307X/41/2/027401
CONDENSED MATTER: ELECTRONIC STRUCTURE, ELECTRICAL, MAGNETIC, AND OPTICAL PROPERTIES |
Ultrathin Limit on the Anisotropic Superconductivity of Single-Layered Cuprate Films
Feng Ran1,2, Pan Chen1, Dingyi Li1,2, Peiyu Xiong1, Zixin Fan1, Haoming Ling1,2, Yan Liang1, and Jiandi Zhang1,2*
1Beijing National Laboratory for Condensed Matter Physics, Institute of Physics, Chinese Academy of Sciences, Beijing 100190, China
2School of Physical Sciences, University of Chinese Academy of Sciences, Beijing 100049, China
Cite this article:   
Feng Ran, Pan Chen, Dingyi Li et al  2024 Chin. Phys. Lett. 41 027401
Download: PDF(5144KB)   PDF(mobile)(5361KB)   HTML
Export: BibTeX | EndNote | Reference Manager | ProCite | RefWorks
Abstract Exploring dimensionality effects on cuprates is important for understanding the nature of high-temperature superconductivity. By atomically layer-by-layer growth with oxide molecular beam epitaxy, we demonstrate that La$_{2- x}$Sr$_{x}$CuO$_{4}$ ($x = 0.15$) thin films remain superconducting down to 2 unit cells of thickness but quickly reach the maximum superconducting transition temperature at and above 4 unit cells. By fitting the critical magnetic field (${\mu_{0}H}_{\rm c2}$), we show that the anisotropy of the film's superconductivity increases with decreasing film thickness, indicating that the superconductivity of the film gradually evolves from weak three- to two-dimensional character. These results are helpful to gain more insight into the nature of high-temperature superconductivity with dimensionality.
Received: 06 December 2023      Published: 07 February 2024
PACS:  74.72.-h (Cuprate superconductors)  
  74.25.Jb (Electronic structure (photoemission, etc.))  
  79.60.-i (Photoemission and photoelectron spectra)  
  71.70.Ej (Spin-orbit coupling, Zeeman and Stark splitting, Jahn-Teller effect)  
TRENDMD:   
URL:  
https://cpl.iphy.ac.cn/10.1088/0256-307X/41/2/027401       OR      https://cpl.iphy.ac.cn/Y2024/V41/I2/027401
Service
E-mail this article
E-mail Alert
RSS
Articles by authors
Feng Ran
Pan Chen
Dingyi Li
Peiyu Xiong
Zixin Fan
Haoming Ling
Yan Liang
and Jiandi Zhang
[1] Bednorz J G and Müller K A 1986 Z. Phys. B 64 189
[2] Schilling A, Cantoni M, and Ott H R 1993 Nature 363 56
[3] Ding H, Yokoya T, Campuzano J C, Takahashi T, Randeria M, Norman M R, Mochiku T, and Giapintzakis J 1996 Nature 382 51
[4] Vishik I M 2018 Rep. Prog. Phys. 81 062501
[5] Božović I, He X, and Bollinger A T 2016 Nature 536 309
[6] Gurvitch M and Fiory A T 1987 Phys. Rev. Lett. 59 1337
[7] Jin K, Butch N P, Kirshenbaum K, and Greene R L 2011 Nature 476 73
[8] Tarascon J M, Greene L H, McKinnon W R, and Geballe T H 1987 Science 235 1373
[9] Fisher M P A 1990 Phys. Rev. Lett. 65 923
[10] Bollinger A T, Dubuis G, Yoon J, Pavuna D, and Božović I 2011 Nature 472 458
[11] Schneider R, Zaitsev A G, and Löhneysen H v 2012 Phys. Rev. Lett. 108 257003
[12] Meyer T L, Jiang L, Park S, and Lee H N 2015 APL Mater. 3 126102
[13] Cieplak M Z, Berkowski M, Guha S, Cheng E, Vagelos A S, Rabinowitz D J, Wu B, and Lindenfeld P 1994 Appl. Phys. Lett. 65 3383
[14] Miller A M, Lemon M, Choffel M A, Rich S R, and Johnson D C 2022 Z. Naturforsch. 77 313
[15] Kiessig H 1930 Naturwissenschaften 18 847
[16] Kozuka Y, Kim M, Bell C, Kim B G, and Hwang H Y 2009 Nature 462 487
[17] Hsu J W P and Kapitulnik A 1992 Phys. Rev. B 45 4819
[18] Saito Y, Kasahara Y, Ye J, and Nojima T 2015 Science 350 409
[19] Tinkham M 1963 Phys. Rev. 129 2413
[20] Tinkham M and Emery V 1996 Phys. Today 49 74
[21] Maki K 1966 Phys. Rev. 148 362
[22] Helfand E and Werthamer N R 1966 Phys. Rev. 147 288
[23] Werthamer N R and Hohenberg P C 1966 Phys. Rev. 147 295
[24] Yang P T, Liu Z Y, Chen K Y, Liu X L, Zhang X, Yu Z H, Zhang H, Sun J P, Uwatoko Y, Dong X L, Jiang K, Hu J P, Guo Y F, and Cheng J G 2022 Nat. Commun. 13 2975
[25] Beasley M R and Orlando T P 1979 Phys. Rev. Lett. 42 1165
[26] Guo J, Zhou Y, Huang C, Cai S, Sheng Y, Gu G, Yang C, Lin G, Yang K, Li A, Wu Q, and Sun L 2020 Nat. Phys. 16 295
[27] Kosterlitz J M and Thouless D J 1973 J. Phys. C 6 1181
[28]Berezinskiı̌ V L 1972 Sov. Phys.-JETP 34 610
[29] Halperin B I and Nelson D R 1979 J. Low Temp. Phys. 36 599
[30] Reyren N, Thiel S, Caviglia A D, Kourkoutis L F, Hammerl G, Richter C, Schneider C W, Kopp T, Rüetschi A S, Jaccard D, Gabay M, Muller D A, and Mannhart J 2007 Science 317 1196
Related articles from Frontiers Journals
[1] Kun Jiang, Ziqiang Wang, and Fu-Chun Zhang. High-Temperature Superconductivity in La$_3$Ni$_2$O$_7$[J]. Chin. Phys. Lett., 2024, 41(1): 027401
[2] Huijing Mu, Jin Si, Qingui Yang, Ying Xiang, Haipeng Yang, and Hai-Hu Wen. Temperature-Dependent Anisotropy and Two-Band Superconductivity Revealed by Lower Critical Field in Organic Superconductor $\kappa$-(BEDT-TTF)$_{2}$Cu[N(CN)$_{2}$]Br[J]. Chin. Phys. Lett., 2023, 40(6): 027401
[3] Ze-Long Wang, Rui-Ying Mao, Da Wang, and Qiang-Hua Wang. Effect of Anisotropic Impurity Scattering in D-Wave Superconductors[J]. Chin. Phys. Lett., 2023, 40(5): 027401
[4] Wenjing Liu, Heming Zha, Gen-Da Gu, Xiaoping Shen, Mao Ye, and Shan Qiao. Anisotropy of Electronic Spin Texture in the High-Temperature Cuprate Superconductor Bi$_{2}$Sr$_{2}$CaCu$_{2}$O$_{8+\delta}$[J]. Chin. Phys. Lett., 2023, 40(3): 027401
[5] Yu Zhang, Jiawei Mei, and Weiqiang Chen. Enhanced Intertwined Spin and Charge Orders in the $t$–$J$ Model in a Small $J$ Case[J]. Chin. Phys. Lett., 2023, 40(3): 027401
[6] Xue Ming, Chengping He, Xiyu Zhu, Huiyang Gou, and Hai-Hu Wen. Growth and Characterization of a New Superconductor GaBa$_{2}$Ca$_{3}$Cu$_{4}$O$_{11+\delta}$[J]. Chin. Phys. Lett., 2023, 40(1): 027401
[7] Jin Zhao, Yu-Lin Gan, Guang Yang, Yi-Gui Zhong, Cen-Yao Tang, Fa-Zhi Yang, Giao Ngoc Phan, Qiang-Tao Sui, Zhong Liu, Gang Li, Xiang-Gang Qiu, Qing-Hua Zhang, Jie Shen, Tian Qian, Li Lu, Lei Yan, Gen-Da Gu, and Hong Ding. Continuously Doping Bi$_{2}$Sr$_{2}$CaCu$_{2}$O$_{8+\delta}$ into Electron-Doped Superconductor by CaH$_{2}$ Annealing Method[J]. Chin. Phys. Lett., 2022, 39(7): 027401
[8] Ziwen Chen, Yulong Li, Rui Zhu, Jun Xu, Tiequan Xu, Dali Yin, Xinwei Cai, Yue Wang, Jianming Lu, Yan Zhang, and Ping Ma. High-Temperature Superconducting YBa$_{2}$Cu$_{3}$O$_{7-\delta}$ Josephson Junction Fabricated with a Focused Helium Ion Beam[J]. Chin. Phys. Lett., 2022, 39(7): 027401
[9] Xuan Sun, Wen-Tao Zhang, Lin Zhao, Guo-Dong Liu, Gen-Da Gu, Qin-Jun Peng, Zhi-Min Wang, Shen-Jin Zhang, Feng Yang, Chuang-Tian Chen, Zu-Yan Xu, Xing-Jiang Zhou. Temperature Evolution of Energy Gap and Band Structure in the Superconducting and Pseudogap States of Bi$_2$Sr$_2$CaCu$_2$O$_{8+\delta}$ Superconductor Revealed by Laser-Based Angle-Resolved Photoemission Spectroscopy[J]. Chin. Phys. Lett., 2018, 35(1): 027401
[10] Ming-Qiang Ren, Ya-Jun Yan, Tong Zhang, Dong-Lai Feng. Possible Nodeless Superconducting Gaps in Bi$_2$Sr$_2$CaCu$_2$O$_{8+\delta}$ and YBa$_2$Cu$_3$O$_{7-x}$ Revealed by Cross-Sectional Scanning Tunneling Spectroscopy[J]. Chin. Phys. Lett., 2016, 33(12): 027401
[11] Zhao-Xia Zhang, Feng Xue, Xiao-Fan Gou. Interaction of Two Parallel Cracks in REBCO Bulk Superconductors under Applied Magnetic Field[J]. Chin. Phys. Lett., 2016, 33(07): 027401
[12] Yu-Xiao Zhang, Lin Zhao, Gen-Da Gu, Xing-Jiang Zhou. A Reproducible Approach of Preparing High-Quality Overdoped Bi$_2$Sr$_2$CaCu$_2$O$_{8+\delta}$ Single Crystals by Oxygen Annealing and Quenching Method[J]. Chin. Phys. Lett., 2016, 33(06): 027401
[13] GOU Xiao-Fan, ZHU Guang. A Modified Lattice Model of the Reversible Effect of Axial Strain on the Critical Current of Polycrystalline REBa2Cu3O7−δ Films[J]. Chin. Phys. Lett., 2015, 32(03): 027401
[14] WANG Fang-Fang, WEI Peng-Yue, DING Xue-Yong, XING Xian-Ran, CHEN Xing-Qiu. Towards a Mechanism Underlying the Stability of the Tetragonal CuO Phase: Comparison with NiO and CoO by Hybrid Density Functional Calculation[J]. Chin. Phys. Lett., 2014, 31(2): 027401
[15] ZHANG Dan-Bo, HAN Qiang, WANG Zi-Dan. The Generalized Joint Density of States and Its Application to Exploring the Pairing Symmetry of High-Tc Superconductors[J]. Chin. Phys. Lett., 2013, 30(5): 027401
Viewed
Full text


Abstract