Chin. Phys. Lett.  2024, Vol. 41 Issue (2): 027201    DOI: 10.1088/0256-307X/41/2/027201
CONDENSED MATTER: ELECTRONIC STRUCTURE, ELECTRICAL, MAGNETIC, AND OPTICAL PROPERTIES |
Localization Dynamics at the Exceptional Point of Non-Hermitian Creutz Ladder
S. M. Zhang, T. Y. He, and L. Jin*
School of Physics, Nankai University, Tianjin 300071, China
Cite this article:   
S. M. Zhang, T. Y. He, and L. Jin 2024 Chin. Phys. Lett. 41 027201
Download: PDF(2310KB)   PDF(mobile)(2357KB)   HTML
Export: BibTeX | EndNote | Reference Manager | ProCite | RefWorks
Abstract We propose a quasi-one-dimensional non-Hermitian Creutz ladder with an entirely flat spectrum by introducing alternating gain and loss components while maintaining inversion symmetry. Destructive interference generates a flat spectrum at the exceptional point, where the Creutz ladder maintains coalesced and degenerate eigenvalues with compact localized states distributed in a single plaquette. All excitations are completely confined within the localization area, unaffected by gain and loss. Single-site excitations exhibit nonunitary dynamics with intensities increasing due to level coalescence, while multiple-site excitations may display oscillating or constant intensities at the exceptional point. These results provide insights into the fascinating dynamics of non-Hermitian localization, where level coalescence and degeneracy coexist at the exceptional point.
Received: 17 November 2023      Published: 07 February 2024
PACS:  72.15.Rn (Localization effects (Anderson or weak localization))  
  03.65.Vf (Phases: geometric; dynamic or topological)  
  42.25.Hz (Interference)  
TRENDMD:   
URL:  
https://cpl.iphy.ac.cn/10.1088/0256-307X/41/2/027201       OR      https://cpl.iphy.ac.cn/Y2024/V41/I2/027201
Service
E-mail this article
E-mail Alert
RSS
Articles by authors
S. M. Zhang
T. Y. He
and L. Jin
[1] Feng L, El-Ganainy R, and Ge L 2017 Nat. Photonics 11 752
[2]Christodoulides D and Yang J 2018 Parity-Time Symmetry and Its Applications (Berlin: Springer)
[3] El-Ganainy R, Makris K G, Khajavikhan M, Musslimani Z H, Rotter S, and Christodoulides D N 2018 Nat. Phys. 14 11
[4] Miri M A and Alù A 2019 Science 363 eaar7709
[5] Özdemir Ş K, Rotter S, Nori F, and Yang L 2019 Nat. Mater. 18 783
[6] Jin L and Song Z 2009 Phys. Rev. A 80 052107
[7] Jin L and Song Z 2010 Phys. Rev. A 81 032109
[8] Luo X B, Huang J H, Zhong H H, Qin X Z, Xie Q T, Kivshar Y S, and Lee C 2013 Phys. Rev. Lett. 110 243902
[9] Jin L and Song Z 2016 Phys. Rev. A 93 062110
[10] Zhang K L, Jin L, and Song Z 2019 Phys. Rev. B 100 144301
[11] Duan L W, Wang Y Z, and Chen Q H 2020 Chin. Phys. Lett. 37 081101
[12] Fu T, Wang Y F, Wang X Y, Zhou X Y, and Zheng W H 2020 Chin. Phys. Lett. 37 044207
[13] Xu H S and Jin L 2023 Phys. Rev. Res. 5 L042005
[14] Jin L 2018 Phys. Rev. A 97 012121
[15] Zhang S M, Zhang X Z, Jin L, and Song Z 2020 Phys. Rev. A 101 033820
[16] Jin L, Wu H C, Wei B B, and Song Z 2020 Phys. Rev. B 101 045130
[17] Wiersig J 2014 Phys. Rev. Lett. 112 203901
[18] Liu Z P, Zhang J, Özdemir Ş K, Peng B, Jing H, Lü X Y, Li C W, Yang L, Nori F, and Liu Y X 2016 Phys. Rev. Lett. 117 110802
[19] Hodaei H, Hassan A U, Wittek S, Garcia-Gracia H, El-Ganainy R, Christodoulides D N, and Khajavikhan M 2017 Nature 548 187
[20] Chen W J, Özdemir Ş K, Zhao G M, Wiersig J, and Yang L 2017 Nature 548 192
[21] Chen C, Jin L, and Liu R B 2019 New J. Phys. 21 083002
[22] Lai Y H, Lu Y K, Suh M G, Yuan Z, and Vahala K 2019 Nature 576 65
[23] Hokmabadi M P, Schumer A, Christodoulides D N, and Khajavikhan M 2019 Nature 576 70
[24] Xu H, Mason D, Jiang L, and Harris J G E 2016 Nature 537 80
[25] Jin L and Song Z 2012 Phys. Rev. A 85 012111
[26] Ramezani H, Li H K, Wang Y, and Zhang X 2014 Phys. Rev. Lett. 113 263905
[27] Jin L, Zhang X Z, Zhang G, and Song Z 2016 Sci. Rep. 6 20976
[28] Gear J, Sun Y, Xiao S, Zhang L, Fitzgerald R, Rotter S, Chen H, and Li J 2017 New J. Phys. 19 123041
[29] Jin L and Song Z 2018 Phys. Rev. Lett. 121 073901
[30] Luo J, Li J, and Lai Y 2018 Phys. Rev. X 8 031035
[31] Jin L and Song Z 2021 Chin. Phys. Lett. 38 024202
[32] Jin L 2022 Chin. Phys. Lett. 39 037302
[33] Zhang K, Fang C, and Yang Z S 2023 Phys. Rev. Lett. 131 036402
[34] Liu C, Lan J, Gu Z M, and Zhu J 2023 Chin. Phys. Lett. 40 124301
[35] Ashida Y, Gong Z, and Ueda M 2020 Adv. Phys. 69 249
[36] Bergholtz E J, Budich J C, and Kunst F K 2021 Rev. Mod. Phys. 93 015005
[37] Ding K, Fang C, and Ma G 2022 Nat. Rev. Phys. 4 745
[38] Lin R J, Tai T, Li L H, and Lee C H 2023 Front. Phys. 18 53605
[39] Yao S Y and Wang Z 2018 Phys. Rev. Lett. 121 086803
[40] Yao S Y, Song F, and Wang Z 2018 Phys. Rev. Lett. 121 136802
[41] Song F, Yao S Y, and Wang Z 2019 Phys. Rev. Lett. 123 246801
[42] Zhang K, Yang Z S, and Fang C 2020 Phys. Rev. Lett. 125 126402
[43] Yang Z S, Zhang K, Fang C, and Hu J P 2020 Phys. Rev. Lett. 125 226402
[44] Zhang K, Yang Z, and Fang C 2022 Nat. Commun. 13 2496
[45] Jin L 2017 Phys. Rev. A 96 032103
[46] Jin L, Wang P, and Song Z 2017 Sci. Rep. 7 5903
[47] Jin L and Song Z 2019 Phys. Rev. B 99 081103(R)
[48] Wu H C, Jin L, and Song Z 2019 Phys. Rev. B 100 155117
[49] Lin S, Jin L, and Song Z 2019 Phys. Rev. B 99 165148
[50] Zhang K L, Wu H C, Jin L, and Song Z 2019 Phys. Rev. B 100 045141
[51] Xiao L, Deng T S, Wang K K, Zhu G Y, Wang Z, Yi W, and Xue P 2020 Nat. Phys. 16 761
[52] Wang X R, Guo C X, Du Q, and Kou S P 2020 Chin. Phys. Lett. 37 117303
[53] Wu H C, Yang X M, Jin L, and Song Z 2020 Phys. Rev. B 102 161101(R)
[54] Wu H C, Jin L, and Song Z 2021 Phys. Rev. B 103 235110
[55] Xie L C, Wu H C, Zhang X Z, Jin L, and Song Z 2021 Phys. Rev. B 104 125406
[56] Li T Y, Zhang Y S, and Yi W 2021 Chin. Phys. Lett. 38 030301
[57] Cao P C, Peng Y G, Li Y, and Zhu X F 2022 Chin. Phys. Lett. 39 057801
[58] Wang J H, Tao Y L, and Xu Y 2022 Chin. Phys. Lett. 39 010301
[59] Wang L W, Lin Z K, and Jiang J H 2023 Phys. Rev. B 108 195126
[60] Liu Z F and Huang J P 2023 Chin. Phys. Lett. 40 110305
[61] Masumoto N, Kim N Y, Byrnes T, Kusudo K, Löffler A, Höfling S, Forchel A, and Yamamoto Y 2012 New J. Phys. 14 065002
[62] Flach S, Leykam D, Bodyfelt J D, Matthies P, and Desyatnikov A S 2014 Europhys. Lett. 105 30001
[63] Bodyfelt J D, Leykam D, Danieli C, Yu X, and Flach S 2014 Phys. Rev. Lett. 113 236403
[64] Jacqmin T, Carusotto I, Sagnes I, Abbarchi M, Solnyshkov D D, Malpuech G, Galopin E, Lemaître A, Bloch J, and Amo A 2014 Phys. Rev. Lett. 112 116402
[65] Morales-Inostroza L and Vicencio R A 2016 Phys. Rev. A 94 043831
[66] Leykam D, Andreanov A, and Flach S 2018 Adv. Phys.: X 3 1473052
[67] Zhang S M and Jin L 2020 Phys. Rev. B 102 054301
[68] Guzmán-Silva D, Mejía-Cortés C, Bandres M A, Rechtsman M C, Weimann S, Nolte S, Segev M, Szameit A, and Vicencio R A 2014 New J. Phys. 16 063061
[69] Mukherjee S and Thomson R R 2015 Opt. Lett. 40 5443
[70] Vicencio R A, Cantillano C, Morales-Inostroza L, Real B, Mejía-Cortés C, Weimann S, Szameit A, and Molina M I 2015 Phys. Rev. Lett. 114 245503
[71] Mukherjee S, Spracklen A, Choudhury D, Goldman N, Öhberg P, Andersson E, and Thomson R R 2015 Phys. Rev. Lett. 114 245504
[72] Molina M I 2015 Phys. Rev. A 92 063813
[73] Ge L 2015 Phys. Rev. A 92 052103
[74] Ramezani H 2017 Phys. Rev. A 96 011802(R)
[75] Biesenthal T, Kremer M, Heinrich M, and Szameit A 2019 Phys. Rev. Lett. 123 183601
[76] Qi B K, Zhang L X, and Ge L 2018 Phys. Rev. Lett. 120 093901
[77] Jin L 2019 Phys. Rev. A 99 033810
[78] Zhang S M and Jin L 2019 Phys. Rev. A 100 043808
[79] Zhang S M, Xu H S, and Jin L 2023 Phys. Rev. A 108 023518
[80] Zhang X Z, Jin L, and Song Z 2012 Phys. Rev. A 85 012106
[81] Vidal J, Mosseri R, and Douçot B 1998 Phys. Rev. Lett. 81 5888
[82] Mukherjee S, Di Liberto M, Öhberg P, Thomson R R, and Goldman N 2018 Phys. Rev. Lett. 121 075502
[83] Kremer M, Petrides I, Meyer E, Heinrich M, Zilberberg O, and Szameit A 2020 Nat. Commun. 11 907
[84] Longhi S 2014 Opt. Lett. 39 5892
[85] Gligorić G, Beličev P P, Leykam D, and Maluckov A 2019 Phys. Rev. A 99 013826
[86] Di Liberto M, Mukherjee S, and Goldman N 2019 Phys. Rev. A 100 043829
[87] Danieli C, Andreanov A, Mithun T, and Flach S 2021 Phys. Rev. B 104 085131
[88] Cai H, Liu J, Wu J, He Y, Zhu S Y, Zhang J X, and Wang D W 2019 Phys. Rev. Lett. 122 023601
[89] Kang J H, Han J H, and Shin Y 2020 New J. Phys. 22 013023
[90] Kuno Y 2020 Phys. Rev. B 101 184112
[91] Wang P, Jin L, and Song Z 2019 Phys. Rev. A 99 062112
[92] Sun N and Lim L K 2017 Phys. Rev. B 96 035139
[93] Alaeian H, Chang C W S, Moghaddam M V, Wilson C M, Solano E, and Rico E 2019 Phys. Rev. A 99 053834
[94] Hung J S C, Busnaina J H, Chang C W S, Vadiraj A M, Nsanzineza I, Solano E, Alaeian H, Rico E, and Wilson C M 2021 Phys. Rev. Lett. 127 100503
[95] Xu H S and Jin L 2022 Phys. Rev. Res. 4 L032015
[96] Ozawa T, Price H M, Amo A, Goldman N, Hafezi M, Lu L, Rechtsman M C, Schuster D, Simon J, Zilberberg O, and Carusotto I 2019 Rev. Mod. Phys. 91 015006
[97] Goldman N and Dalibard J 2014 Phys. Rev. X 4 031027
[98] Hafezi M 2014 Int. J. Mod. Phys. B 28 1441002
[99] Xie L C, Jin L, and Song Z 2023 Sci. Bull. 68 255
[100] Sounas D L and Alù A 2017 Nat. Photonics 11 774
[101] Miri M A, Ruesink F, Verhagen E, and Alù A 2017 Phys. Rev. Appl. 7 064014
[102] Fan L, Wang J, Varghese L T, Shen H, Niu B, Xuan Y, Weiner A M, and Qi M 2012 Science 335 447
[103] Jin L and Song Z 2011 Phys. Rev. A 84 042116
[104] Zhang S M and Jin L 2020 Phys. Rev. Res. 2 033127
[105] Gligorić G, Leykam D, and Maluckov A 2020 Phys. Rev. A 101 023839
[106] Longhi S 2021 Opt. Lett. 46 2872
[107] Li H, Dong Z L, Longhi S, Liang Q, Xie D Z, and Yan B 2022 Phys. Rev. Lett. 129 220403
[108] Zhan X, Xiao L, Bian Z, Wang K, Qiu X, Sanders B C, Yi W, and Xue P 2017 Phys. Rev. Lett. 119 130501
[109] Wang K K, Qiu X Z, Xiao L, Zhan Z, Bian Z H, Sanders B C, Yi W, and Xue P 2019 Nat. Commun. 10 2293
[110] Wang P, Jin L, Zhang G, and Song Z 2016 Phys. Rev. A 94 053834
[111] Li C, Jin L, and Song Z 2017 Phys. Rev. A 95 022125
[112] Zhong Q, Christodoulides D N, Khajavikhan M, Makris K G, and El-Ganainy R 2018 Phys. Rev. A 97 020105(R)
[113] Xu H S, Xie L C, and Jin L 2023 Phys. Rev. A 107 062209
Related articles from Frontiers Journals
[1] Junjun Xu, Yanxing Li. Eigenstate Distribution Fluctuation of a Quenched Disordered Bose–Hubbard System in Thermal-to-Localized Transitions[J]. Chin. Phys. Lett., 2019, 36(2): 027201
[2] Rong-Qiang He, Zhong-Yi Lu. Interaction-Induced Characteristic Length in Strongly Many-Body Localized Systems[J]. Chin. Phys. Lett., 2018, 35(2): 027201
[3] Bo-Ya Miao, Yu An. Localization in an Acoustic Cavitation Cloud[J]. Chin. Phys. Lett., 2017, 34(3): 027201
[4] PANG Fei. Magneto-Transport Properties of Insulating Bulk States in Bi(111) Films[J]. Chin. Phys. Lett., 2015, 32(02): 027201
[5] HU Dong-Sheng, ZHANG Yan-Ling, YIN Xiao-Gang, ZHU Chen-Ping, ZHANG Yong-Mei. Resonant Tunneling States of a Pairing Ladder with Random Dimer Chains[J]. Chin. Phys. Lett., 2012, 29(2): 027201
[6] ZHAO Wei**, DING Jian-Wen . Reproduced Giant Localization Length of Two-Side Surface Disordered Nanowires with Long-Range Correlation[J]. Chin. Phys. Lett., 2011, 28(10): 027201
[7] PANG Fei, YIN Shu-Li, LIANG Xue-Jin, CHEN Dong-Min . Anomalous Magneto-Transport Properties of Epitaxial Single-Crystal Bi Films on Si(111)[J]. Chin. Phys. Lett., 2010, 27(10): 027201
[8] LIU Hai, LIU Jin-Song, LÜ, Jian-Tao, WANG Ke-Jia. Morphology Dependence of Power Spectra for Different Polarized States from Two-Dimensional Active Random Media[J]. Chin. Phys. Lett., 2009, 26(5): 027201
[9] SHENG Lei-Mei, GAO Wei, CAO Shi-Xun, ZHANG Jin-Cang. Magnetoresistance of Multiwalled Carbon Nanotube Yarns[J]. Chin. Phys. Lett., 2008, 25(9): 027201
[10] GUO Zi-Zheng. Entanglement in One-Dimensional Anderson Model with Long-Range Correlated Disorder[J]. Chin. Phys. Lett., 2008, 25(3): 027201
[11] ZHONG Yan-Ming, XIONG Shi-Jie. Nonadiabatic Geometric Phase and Induced Persistent Current in Mesoscopic Square Circuit with Tilted Magnetic Field at Edges[J]. Chin. Phys. Lett., 2007, 24(9): 027201
[12] A. John Peter. Non-Achievability of Metal--Insulator Transition in Two-Dimensional Systems[J]. Chin. Phys. Lett., 2006, 23(4): 027201
[13] XIE Ying-Mao, LIU Zheng-Dong,. Effect of Pump Area on Lasing Modes in Active Random Media[J]. Chin. Phys. Lett., 2005, 22(11): 027201
[14] LIU Chun-Xu, LIU Jun-Ye, ZHANG Jia-Hua, DOU Kai. Lasering in a Waveguide with Scatterers in Diameter 20nm[J]. Chin. Phys. Lett., 2004, 21(10): 027201
[15] HE Li-Qun, Eugene Kogan, Moshe Kaveh, Shlomo Havlin, Nehemia Schartz, LUO Dawei. Distribution Function of Mesoscopic Hopping Conductance[J]. Chin. Phys. Lett., 2002, 19(11): 027201
Viewed
Full text


Abstract