CONDENSED MATTER: STRUCTURE, MECHANICAL AND THERMAL PROPERTIES |
|
|
|
|
Heteronuclear Magnetisms with Ultracold Spinor Bosonic Gases in Optical Lattices |
Yongqiang Li1,2*, Chengkun Xing3, Ming Gong4,5,6*, Guangcan Guo4,5,6, and Jianmin Yuan1,7 |
1Department of Physics, National University of Defense Technology, Changsha 410073, China 2Hunan Key Laboratory of Extreme Matter and Applications, National University of Defense Technology, Changsha 410073, China 3Key Lab of Quantum Information (CAS), University of Science and Technology of China, Hefei 230026, China 4CAS Key Laboratory of Quantum Information, University of Science and Technology of China, Hefei 230026, China 5Synergetic Innovation Center of Quantum Information and Quantum Physics, University of Science and Technology of China, Hefei 230026, China 6Hefei National Laboratory, University of Science and Technology of China, Hefei 230088, China 7Department of Physics, Graduate School of China Academy of Engineering Physics, Beijing 100193, China
|
|
Cite this article: |
Yongqiang Li, Chengkun Xing, Ming Gong et al 2024 Chin. Phys. Lett. 41 026701 |
|
|
Abstract Motivated by recent realizations of spin-1 NaRb mixtures in the experiments [Phys. Rev. Lett. 114, 255301 (2015); Phys. Rev. Lett. 128, 223201 (2022)], we investigate heteronuclear magnetism in the Mott-insulating regime. Different from the identical mixtures where the boson statistics only admits even parity states from angular momentum composition, for heteronuclear atoms in principle all angular momentum states are allowed, which can give rise to new magnetic phases. While various magnetic phases can be developed over these degenerate spaces, the concrete symmetry breaking phases depend on not only the degree of degeneracy but also the competitions from many-body interactions. We unveil these rich phases using the bosonic dynamical mean-field theory approach. These phases are characterized by various orders, including spontaneous magnetization order, spin magnitude order, singlet pairing order, and nematic order, which may coexist specially in the regime with odd parity. Finally we address the possible parameter regimes for observing these spin-ordered Mott phases.
|
|
Received: 16 December 2023
Published: 23 February 2024
|
|
PACS: |
67.85.-d
|
(Ultracold gases, trapped gases)
|
|
03.75.Mn
|
(Multicomponent condensates; spinor condensates)
|
|
05.30.Jp
|
(Boson systems)
|
|
05.30.Rt
|
(Quantum phase transitions)
|
|
|
|
|
[1] | Lewenstein M, Sanpera A, Ahufinger V, Damski B, De A S, and Sen U 2007 Adv. Phys. 56 243 |
[2] | Stenger J, Inouye S, Stamper-Kurn D, Miesner H, Chikkatur A, and Ketterle W 1998 Nature 396 345 |
[3] | Schmaljohann H, Erhard M, Kronjäger J, Kottke M, van Staa S, Cacciapuoti L, Arlt J J, Bongs K, and Sengstock K 2004 Phys. Rev. Lett. 92 040402 |
[4] | Barrett M D, Sauer J A, and Chapman M S 2001 Phys. Rev. Lett. 87 010404 |
[5] | Higbie J M, Sadler L E, Inouye S, Chikkatur A P, Leslie S R, Moore K L, Savalli V, and Stamper-Kurn D M 2005 Phys. Rev. Lett. 95 050401 |
[6] | Chang M S, Qin Q S, Zhang W X, You L, and Chapman M S 2005 Nat. Phys. 1 111 |
[7] | Zhao L, Jiang J, Tang T, Webb M, and Liu Y 2015 Phys. Rev. Lett. 114 225302 |
[8] | Gersema P, Voges K K, Borgloh M M Z A, Koch L, Hartmann T, Zenesini A, Ospelkaus S, Lin J, He J, and Wang D 2021 Phys. Rev. Lett. 127 163401 |
[9] | Lin J Y, He J Y, Jin M C, Chen G H, and Wang D J 2022 Phys. Rev. Lett. 128 223201 |
[10] | Huckans J H, Williams J R, Hazlett E L, Stites R W, and O'Hara K M 2009 Phys. Rev. Lett. 102 165302 |
[11] | DeSalvo B J, Yan M, Mickelson P G, de Escobar Y N M, and Killian T C 2010 Phys. Rev. Lett. 105 030402 |
[12] | Taie S, Takasu Y, Sugawa S, Yamazaki R, Tsujimoto T, Murakami R, and Takahashi Y 2010 Phys. Rev. Lett. 105 190401 |
[13] | Krauser J S, Heinze N, Fläschner N, Götze S, Jürgensen O, Lühmann D S, Becker C, and Sengstock K 2012 Nat. Phys. 8 813 |
[14] | Ho T L 1998 Phys. Rev. Lett. 81 742 |
[15] | Demler E and Zhou F 2002 Phys. Rev. Lett. 88 163001 |
[16] | Li Y Q, He L, and Hofstetter W 2016 Phys. Rev. A 93 033622 |
[17] | Koashi M and Ueda M 2000 Phys. Rev. Lett. 84 1066 |
[18] | Santos L and Pfau T 2006 Phys. Rev. Lett. 96 190404 |
[19] | Ho T L and Yip S 1999 Phys. Rev. Lett. 82 247 |
[20] | Cazalilla M A and Rey A M 2014 Rep. Prog. Phys. 77 124401 |
[21] | Kuneš J, Korotin D M, Korotin M A, Anisimov V I, and Werner P 2009 Phys. Rev. Lett. 102 146402 |
[22] | Rizzi M, Rossini D, De Chiara G, Montangero S, and Fazio R 2005 Phys. Rev. Lett. 95 240404 |
[23] | Yip S K 2003 Phys. Rev. Lett. 90 250402 |
[24] | Pollet L 2012 Rep. Prog. Phys. 75 094501 |
[25] | Medley P, Weld D M, Miyake H, Pritchard D E, and Ketterle W 2011 Phys. Rev. Lett. 106 195301 |
[26] | McKay D C and DeMarco B 2011 Rep. Prog. Phys. 74 054401 |
[27] | Mazurenko A, Chiu C S, Ji G, Parsons M F, Kanasz-Nagy M R, Schmidt R, Grusdt F, Demler E, Greif D, and Greiner M 2017 Nature 545 462 |
[28] | Sun H, Yang B, Wang H Y, Zhou Z Y, Su G X, Dai H N, Yuan Z S, and Pan J W 2021 Nat. Phys. 17 990 |
[29] | Xu M Q, Kendrick L H, Kale A, Gang Y Q, Ji G, Scalettar R T, Lebrat M, and Greiner M 2023 Nature 620 971 |
[30] | Luo M, Li Z, and Bao C 2007 Phys. Rev. A 75 043609 |
[31] | Gorshkov A V, Hermele M, Gurarie V, Xu C, Julienne P S, Ye J, Zoller P, Demler E, Lukin M D, and Rey A M 2010 Nat. Phys. 6 289 |
[32] | Honerkamp C and Hofstetter W 2004 Phys. Rev. Lett. 92 170403 |
[33] | Miesner H J, Stamper-Kurn D M, Stenger J, Inouye S, Chikkatur A P, and Ketterle W 1999 Phys. Rev. Lett. 82 2228 |
[34] | Li X K, Zhu B, He X D, Wang F D, Guo M Y, Xu Z F, Zhang S Z, and Wang D J 2015 Phys. Rev. Lett. 114 255301 |
[35] | Wang F D, He X D, Li X K, Zhu B, Chen J, and Wang D J 2015 New J. Phys. 17 035003 |
[36] | Guo M Y, Zhu B, Lu B, Ye X, Wang F D, Vexiau R, Bouloufa-Maafa N, Quéméner G, Dulieu O, and Wang D J 2016 Phys. Rev. Lett. 116 205303 |
[37] | Xu Z F, Zhang Y, and You L 2009 Phys. Rev. A 79 023613 |
[38] | Xu Z, Zhang J, Zhang Y, and You L 2010 Phys. Rev. A 81 033603 |
[39] | Shi Y 2010 Phys. Rev. A 82 023603 |
[40] | Zhang J, Hou X, Chen B, and Zhang Y 2015 Phys. Rev. A 91 013628 |
[41] | See the supplementary material for model details about derivation of extended BH model in Section I, wave functions for $n = 2$ and $3$ in Section II, and details about the BDMFT in Section III. |
[42] | Cheianov V and Chudnovskiy A L 2017 arXiv:1705.01478 [cond-mat.quant-gas] |
[43] | Papoular D, Shlyapnikov G, and Dalibard J 2010 Phys. Rev. A 81 041603 |
[44] | Hamley C, Bookjans E, Behin-Aein G, Ahmadi P, and Chapman M 2009 Phys. Rev. A 79 023401 |
[45] | Fatemi F, Jones K, and Lett P D 2000 Phys. Rev. Lett. 85 4462 |
[46] | Theis M, Thalhammer G, Winkler K, Hellwig M, Ruff G, Grimm R, and Denschlag J H 2004 Phys. Rev. Lett. 93 123001 |
[47] | Enomoto K, Kasa K, Kitagawa M, and Takahashi Y 2008 Phys. Rev. Lett. 101 203201 |
[48] | Blatt S, Nicholson T, Bloom B, Williams J, Thomsen J, Julienne P, and Ye J 2011 Phys. Rev. Lett. 107 073202 |
[49] | Yamazaki R, Taie S, Sugawa S, Enomoto K, and Takahashi Y 2013 Phys. Rev. A 87 010704 |
[50] | Yan M, DeSalvo B, Ramachandhran B, Pu H, and Killian T 2013 Phys. Rev. Lett. 110 123201 |
[51] | Sándor N, González-Férez R, Julienne P S, and Pupillo G 2017 Phys. Rev. A 96 032719 |
[52] | Kobayashi K, Okumura M, Ota Y, Yamada S, and Machida M 2012 Phys. Rev. Lett. 109 235302 |
[53] | Isaev L, Schachenmayer J, and Rey A M 2016 Phys. Rev. Lett. 117 135302 |
[54] | Belemuk A M, Chtchelkatchev N M, Mikheyenkov A V, and Kugel K I 2017 Phys. Rev. B 96 094435 |
[55] | Byczuk K and Vollhardt D 2008 Phys. Rev. B 77 235106 |
[56] | Hubener A, Snoek M, and Hofstetter W 2009 Phys. Rev. B 80 245109 |
[57] | Hu W J and Tong N H 2009 Phys. Rev. B 80 245110 |
[58] | Anders P, Gull E, Pollet L, Troyer M, and Werner P 2010 Phys. Rev. Lett. 105 096402 |
[59] | Capogrosso-Sansone B, Prokofév N, and Svistunov B 2007 Phys. Rev. B 75 134302 |
[60] | We have verified that all sites are uniform in the parameter regime studied here, and each order parameter in the whole lattice sites takes the identical value within our numerical accuracy. This assumption may break down in fermions (or bosons in other parameter regimes with $n=1$), due to the formation of antiferromagnetic phases, or in the models with gauge potentials, where the order parameters over more neighboring sites should be defined. |
[61] | Zhou F and Semenoff G W 2006 Phys. Rev. Lett. 97 180411 |
[62] | Snoek M, Song J L, and Zhou F 2009 Phys. Rev. A 80 053618 |
[63] | Jiang J, Zhao L, Wang S T, Chen Z, Tang T, Duan L M, and Liu Y 2016 Phys. Rev. A 93 063607 |
[64] | Imambekov A, Lukin M D, and Demler E 2003 Phys. Rev. A 68 063602 |
[65] | Natu S S, Pixley J, and Sarma S D 2015 Phys. Rev. A 91 043620 |
[66] | Marti G E and Stamperkurn D 2015 arXiv:1511.01575 [cond-mat.quant-gas] |
[67] | Zibold T, Corre V, Frapolli C, Invernizzi A, Dalibard J, and Gerbier F 2016 Phys. Rev. A 93 023614 |
|
|
Viewed |
|
|
|
Full text
|
|
|
|
|
Abstract
|
|
|
|
|