FUNDAMENTAL AREAS OF PHENOMENOLOGY(INCLUDING APPLICATIONS) |
|
|
|
|
Joint Authentication Public Network Cryptographic Key Distribution Protocol Based on Single Exposure Compressive Ghost Imaging |
Wen-Kai Yu*, Shuo-Fei Wang, and Ke-Qian Shang |
Center for Quantum Technology Research, and Key Laboratory of Advanced Optoelectronic Quantum Architecture and Measurement of Ministry of Education, School of Physics, Beijing Institute of Technology, Beijing 100081, China |
|
Cite this article: |
Wen-Kai Yu, Shuo-Fei Wang, and Ke-Qian Shang 2024 Chin. Phys. Lett. 41 024201 |
|
|
Abstract In the existing ghost-imaging-based cryptographic key distribution (GCKD) protocols, the cryptographic keys need to be encoded by using many modulated patterns, which undoubtedly incurs long measurement time and huge memory consumption. Given this, based on snapshot compressive ghost imaging, a public network cryptographic key distribution protocol is proposed, where the cryptographic keys and joint authentication information are encrypted into several color block diagrams to guarantee security. It transforms the previous single-pixel sequential multiple measurements into multi-pixel single exposure measurements, significantly reducing sampling time and memory storage. Both simulation and experimental results demonstrate the feasibility of this protocol and its ability to detect illegal attacks. Therefore, it takes GCKD a big step closer to practical applications.
|
|
Received: 27 October 2023
Published: 27 February 2024
|
|
PACS: |
42.30.Lr
|
(Modulation and optical transfer functions)
|
|
42.30.Va
|
(Image forming and processing)
|
|
42.30.Wb
|
(Image reconstruction; tomography)
|
|
42.79.Sz
|
(Optical communication systems, multiplexers, and demultiplexers?)
|
|
|
|
|
[1] | Kang Y, Zhang L H, and Zhang D W 2018 Opt. Lasers Eng. 111 58 |
[2] | Gisin N, Ribordy G, Tittel W, and Zbinden H 2002 Rev. Mod. Phys. 74 145 |
[3] | Qu G Y, Yang W H, Song Q H, Liu Y L, Qiu C W, Han J C, Tsai D P, and Xiao S M 2020 Nat. Commun. 11 5484 |
[4] | Chen Y, Qin B D, Zhang J, Deng Y, and Chow S S M 2022 J. Cryptology 35 11 |
[5] | Kim J L and Park J Y 2022 Des. Codes Cryptogr. 90 2967 |
[6] | Kasiran Z, Ali H F, and Noor N M 2019 Indones. J. Electr. Eng. Comput. Sci. 16 988 |
[7] | Mehrabi M A, Doche C, and Jolfaei A 2020 IEEE Trans. Comput. 69 1707 |
[8] | Rivest R L, Shamir A, and Adleman L 1978 Commun. ACM 21 120 |
[9] | Diamanti E, Lo H K, Qi B, and Yuan Z L 2016 npj Quantum Inf. 2 16025 |
[10] | Huang L Y, Zhang Y C, and Yu S 2021 Chin. Phys. Lett. 38 040301 |
[11] | Han Y X, Sun Z Q, Dou T Q, Wang J P, Li Z H, Huang Y Q, Li P Y, and Ma H Q 2022 Chin. Phys. Lett. 39 070301 |
[12] | Liu W Z, Zhang Y Z, Zhen Y Z, Li M H, Liu Y, Fan J Y, Xu F H, Zhang Q, and Pan J W 2022 Phys. Rev. Lett. 129 050502 |
[13] | Maurer U M 1993 IEEE Trans. Inf. Theory 39 733 |
[14] | Wang X Q, Zhang J, Li Y J, Zhao Y L, and Yang X K 2019 IEEE Photonics J. 11 1 |
[15] | Pittman T B, Shih Y H, Strekalov D V, and Sergienko A V 1995 Phys. Rev. A 52 R3429 |
[16] | Gatti A, Brambilla E, Bache M, and Lugiato L A 2004 Phys. Rev. Lett. 93 093602 |
[17] | Chan K W C, O'Sullivan M N, and Boyd R W 2010 Opt. Express 18 5562 |
[18] | Li Y X, Yu W K, Leng J, and Wang S F 2019 Opt. Express 27 35166 |
[19] | Liu R, Kong L J, Si Y, Wang Z X, Qi W R, Tu C H, Li Y N, and Wang H T 2019 Chin. Phys. Lett. 36 044205 |
[20] | Shapiro J H 2008 Phys. Rev. A 78 061802(R) |
[21] | Bromberg Y, Katz O, and Silberberg Y 2009 Phys. Rev. A 79 053840 |
[22] | Yu W K, Li M F, Yao X R, Liu X F, Wu L A, and Zhai G J 2014 Opt. Express 22 7133 |
[23] | He Y H, Zhang A X, Yu W K, Chen L M, and Wu L A 2020 Chin. Phys. Lett. 37 044208 |
[24] | Clemente P, Durán V, Torres-Company V, Tajahuerce E, and Lancis J 2010 Opt. Lett. 35 2391 |
[25] | Tanha M, Kheradmand R, and Ahmadi-Kandjani S 2012 Appl. Phys. Lett. 101 101108 |
[26] | Kang Y, Zhang L H, Ye H L, Zhao M T, Kanwal S, Bai C Y, and Zhang D W 2019 Photonics Res. 7 1370 |
[27] | Li S, Yao X R, Yu W K, Wu L A, and Zhai G J 2013 Opt. Lett. 38 2144 |
[28] | Yu W K, Li S, Yao X R, Liu X F, Wu L A, and Zhai G J 2013 Appl. Opt. 52 7882 |
[29] | Yu W K 2019 Appl. Opt. 58 5294 |
[30] | Kang Y, Zhang L H, Ye H L, Zhao M T, Kanwal S, and Zhang D W 2020 Opt. Lasers Eng. 134 106154 |
[31] | Ye Z Y, Liu H C, and Xiong J 2020 Opt. Express 28 31163 |
[32] | Kang Y, Zhang L H, Ye H L, and Zhang D W 2021 Appl. Phys. B 127 124 |
[33] | Yu W K, Wei N, Li Y X, Yang Y, and Wang S F 2022 Opt. Lasers Eng. 155 107067 |
[34] | Kang Y, Kanwal S, Liu B L, and Zhang D W 2023 Inf. Sci. 640 119025 |
[35] | Yu W K, Yang Y, Li Y X, Wei N, and Wang S F 2022 Sensors 22 3994 |
[36] | Zhang Z H, Deng C, Liu Y, Yuan X, Suo J L, and Dai Q H 2021 Photonics Res. 9 2277 |
[37] | Zhang B, Yuan X, Deng C, Zhang Z H, Suo J L, and Dai Q H 2022 Optica 9 451 |
[38] | Yu Z M, Liu D Y, Cheng L M, Meng Z Y, Zhao Z X, Yuan X, and Xu K 2022 Opt. Express 30 46822 |
[39] | Wang L S, Cao M, Zhong Y, and Yuan X 2022 IEEE Trans. Pattern Anal. Mach. Intell. 45 9072 |
[40] | Li C B, Yin W T, Jiang H, and Zhang Y 2013 Comput. Optim. Appl. 56 507 |
|
|
Viewed |
|
|
|
Full text
|
|
|
|
|
Abstract
|
|
|
|
|