Chin. Phys. Lett.  2024, Vol. 41 Issue (2): 020503    DOI: 10.1088/0256-307X/41/2/020503
GENERAL |
Engineering Quantum Criticality for Quantum Dot Power Harvesting
Jin-Yi Wang1, Lei-Lei Nian1*, and Jing-Tao Lü2*
1School of Physics and Astronomy, Yunnan University, Kunming 650091, China
2School of Physics, Institute for Quantum Science and Engineering, and Wuhan National High Magnetic Field Center, Huazhong University of Science and Technology, Wuhan 430074, China
Cite this article:   
Jin-Yi Wang, Lei-Lei Nian, and Jing-Tao Lü 2024 Chin. Phys. Lett. 41 020503
Download: PDF(4418KB)   PDF(mobile)(4710KB)   HTML
Export: BibTeX | EndNote | Reference Manager | ProCite | RefWorks
Abstract Coupling of quantum-dot circuits to microwave photons enables us to investigate photon-assisted quantum transport. Here, we revisit this typical circuit quantum electrodynamical setup by introducing the Kerr nonlinearity of photons. By exploiting quantum critical behavior, we propose a powerful scheme to control the power-harvesting efficiency in the microwave regime, where the driven-dissipative optical system acts as an energy pump. It drives electron transport against a load in the quantum-dot circuit. The energy transfer and, consequently, the harvesting efficiency are enhanced near the critical point. As the critical point moves towards to low input power, high efficiency within experimental parameters is achieved. Our results complement fundamental studies of photon-to-electron conversion at the nanoscale and provide practical guidance for designs of integrated photoelectric devices through quantum criticality.
Received: 20 December 2023      Editors' Suggestion Published: 04 March 2024
PACS:  05.30.Rt (Quantum phase transitions)  
  05.60.-k (Transport processes)  
  05.90.+m (Other topics in statistical physics, thermodynamics, and nonlinear dynamical systems)  
  03.65.Aa (Quantum systems with finite Hilbert space)  
TRENDMD:   
URL:  
https://cpl.iphy.ac.cn/10.1088/0256-307X/41/2/020503       OR      https://cpl.iphy.ac.cn/Y2024/V41/I2/020503
Service
E-mail this article
E-mail Alert
RSS
Articles by authors
Jin-Yi Wang
Lei-Lei Nian
and Jing-Tao Lü
[1] Carusotto I and Ciuti C 2013 Rev. Mod. Phys. 85 299
[2] Sieberer L M, Buchhold M, and Diehl S 2016 Rep. Prog. Phys. 79 096001
[3] Noh C and Angelakis D G 2017 Rep. Prog. Phys. 80 016401
[4] Garbe L, Bina M, Keller A, Paris M G, and Felicetti S 2020 Phys. Rev. Lett. 124 120504
[5] Heugel T L, Biondi M, Zilberberg O, and Chitra R 2019 Phys. Rev. Lett. 123 173601
[6] Casteels W and Ciuti C 2017 Phys. Rev. A 95 013812
[7] Kurizki G, Bertet P, Kubo Y, Mølmer K, Petrosyan D, Rabl P, and Schmiedmayer J 2015 Proc. Natl. Acad. Sci. USA 112 3866
[8] Gudmundsson V, Sitek A, Lin P Y, Abdullah N R, Tang C S, and Manolescu A 2015 ACS Photonics 2 930
[9] Abdullah N R, Tang C S, Manolescu A, and Gudmundsson V 2016 ACS Photonics 3 249
[10] Viennot J J et al. 2016 C. R. Phys. 17 705
[11] Lu J C, Wang R Q, Ren J, Kulkarni M, and Jiang J H 2019 Phys. Rev. B 99 035129
[12] Blais A, Grimsmo A L, Girvin S M, and Wallraff A 2021 Rev. Mod. Phys. 93 025005
[13] Xu C R and Vavilov M G 2013 Phys. Rev. B 87 035429
[14] Wong C H and Vavilov M G 2017 Phys. Rev. A 95 012325
[15] Khan W et al. 2021 Nat. Commun. 12 5130
[16] Ghirri A, Cornia S, and Affronte M 2020 Sensors 20 4010
[17] Zenelaj D, Potts P P, and Samuelsson P 2022 Phys. Rev. B 106 205135
[18] Haldar S, Havir H, Khan W, Lehmann S, Thelander C, Dick K A, and Maisi V F 2023 Phys. Rev. Lett. 130 087003
[19] Lambert N, Nori F, and Flindt C 2015 Phys. Rev. Lett. 115 216803
[20] Rastelli G and Governale M 2019 Phys. Rev. B 100 085435
[21] Mantovani M, Armour A D, Belzig W, and Rastelli G 2019 Phys. Rev. B 99 045442
[22] Schaeverbeke Q, Avriller R, Frederiksen T, and Pistolesi F 2019 Phys. Rev. Lett. 123 246601
[23] Nian L L, Wang T, Zhang Z Q, Wang J S, and Lü J T 2020 J. Phys. Chem. Lett. 11 8721
[24] Avriller R, Schaeverbeke Q, Frederiksen T, and Pistolesi F 2021 Phys. Rev. B 104 L241403
[25] Nian L L, Zheng B, and Lü J T 2023 Phys. Rev. B 107 L241405
[26] Hellbach F, Pauly F, Belzig W, and Rastelli G 2022 Phys. Rev. B 105 L241407
[27] Bartolo N, Minganti F, Casteels W, and Ciuti C 2016 Phys. Rev. A 94 033841
[28] Casteels W, Fazio R, and Ciuti C 2017 Phys. Rev. A 95 012128
[29] Rodriguez S, Casteels W, Storme F, Zambon N C, Sagnes I, Gratiet L L, Galopin E, Lemaı̂tre A, Amo A, Ciuti C, and Bloch J 2017 Phys. Rev. Lett. 118 247402
[30] Minganti F, Biella A, Bartolo N, and Ciuti C 2018 Phys. Rev. A 98 042118
[31] Fink T, Schade A, Höfling S, Schneider C, and Imamoglu A 2018 Nat. Phys. 14 365
[32] Brookes P, Tancredi G, Patterson A D, Rahamim J, Esposito M, Mavrogordatos T K, Leek P J, Ginossar E, and Szymanska M H 2021 Sci. Adv. 7 eabe9492
[33] Kewming M J, Mitchison M T, and Landi G T 2022 Phys. Rev. A 106 033707
[34] Nian L L, Hu S, Xiong L, Lü J T, and Zheng B 2023 Phys. Rev. B 108 085430
[35] Haldar S, Zenelaj D, Potts P P, Havir H, Lehmann S, Dick K A, Samuelsson P, and Maisi V F 2023 arXiv:2306.15797 [cond-mat.mes-hall]
[36] Scully M O, Chapin K R, Dorfman K E, Kim M B, and Svidzinsky A 2011 Proc. Natl. Acad. Sci. USA 108 15097
[37] Creatore C, Parker M A, Emmott S, and Chin A W 2013 Phys. Rev. Lett. 111 253601
[38] Zhao S C and Chen J Y 2019 New J. Phys. 21 103015
[39] Geng Z, Peters K, Trichet A, Malmir K, Kolkowski R, Smith J, and Rodriguez S 2020 Phys. Rev. Lett. 124 153603
[40] Chen Q M, Fischer M, Nojiri Y, Renger M, Xie E, Partanen M, Pogorzalek S, Fedorov K G, Marx A, Deppe F, and Rudolf G 2023 Nat. Commun. 14 2896
[41] Roy A, Nehra R, Langrock C, Fejer M, and Marandi A 2023 Nat. Phys. 19 427
[42] Beaulieu G, Minganti F, Frasca S, Savona V, Felicetti S, Di Candia R, and Scarlino P 2023 arXiv:2310.13636 [quant-ph]
[43] Lindblad G 1976 Commun. Math. Phys. 48 119
[44]Breuer H P and Petruccione F 2002 The Theory of Open Quantum Systems (Oxford: Oxford University Press)
[45]Carmichael H J 2013 Statistical Methods in Quantum Optics 1: Master Equations and Fokker-Planck Equations (Berlin: Springer)
[46] Schmidt D, Schoelkopf R, and Cleland A 2004 Phys. Rev. Lett. 93 045901
[47] Entin-Wohlman O, Imry Y, and Aharony A 2010 Phys. Rev. B 82 115314
[48] Sothmann B and Büttiker M 2012 Europhys. Lett. 99 27001
[49] Jordan A N, Sothmann B, Sánchez R, and Büttiker M 2013 Phys. Rev. B 87 075312
[50] Sothmann B, Sánchez R, and Jordan A N 2015 Nanotechnology 26 032001
[51] Xi M M, Wang R Q, Lu J C, and Jiang J H 2021 Chin. Phys. Lett. 38 088801
[52] Wang R, Wang C, Lu J, and Jiang J H 2022 Adv. Phys.: X 7 2082317
[53] Lu J C, Wang Z, Peng J B, Wang C, Jiang J H, and Ren J 2022 Phys. Rev. B 105 115428
[54] Ren J 2023 Chin. Phys. Lett. 40 090501
[55] Drummond P and Walls D 1980 J. Phys. A 13 725
[56] Kheruntsyan K 1999 J. Opt. B 1 225
[57] Liu Y Y, Petersson K, Stehlik J, Taylor J M, and Petta J R 2014 Phys. Rev. Lett. 113 036801
[58] Kulkarni M, Cotlet O, and Türeci H E 2014 Phys. Rev. B 90 125402
[59] Hayashi T, Fujisawa T, Cheong H D, Jeong Y H, and Hirayama Y 2003 Phys. Rev. Lett. 91 226804
Related articles from Frontiers Journals
[1] Yongqiang Li, Chengkun Xing, Ming Gong, Guangcan Guo, and Jianmin Yuan. Heteronuclear Magnetisms with Ultracold Spinor Bosonic Gases in Optical Lattices[J]. Chin. Phys. Lett., 2024, 41(2): 020503
[2] Jingxin Sun, Pengju Zhao, Zhongshu Hu, Shengjie Jin, Ren Liao, Xiong-Jun Liu, and Xuzong Chen. Observation of Two-Dimensional Mott Insulator and $\pi$-Superfluid Quantum Phase Transition in Shaking Optical Lattice[J]. Chin. Phys. Lett., 2023, 40(8): 020503
[3] Yun-Tong Yang and Hong-Gang Luo. Characterizing Superradiant Phase of the Quantum Rabi Model[J]. Chin. Phys. Lett., 2023, 40(2): 020503
[4] M.-L. Cai, Z.-D. Liu, Y. Jiang, Y.-K. Wu, Q.-X. Mei, W.-D. Zhao, L. He, X. Zhang, Z.-C. Zhou, and L.-M. Duan. Probing a Dissipative Phase Transition with a Trapped Ion through Reservoir Engineering[J]. Chin. Phys. Lett., 2022, 39(2): 020503
[5] Wen-Jia Rao. Machine Learning for Many-Body Localization Transition[J]. Chin. Phys. Lett., 2020, 37(8): 020503
[6] Hui Zhou, Zhao-Kai Li, Heng-Yan Wang, Hong-Wei Chen, Xin-Hua Peng, Jiang-Feng Du. Experimental Observation of the Ground-State Geometric Phase of Three-Spin $XY$ Model[J]. Chin. Phys. Lett., 2016, 33(06): 020503
[7] WANG Bo, HUANG Hai-Lin, SUN Zhao-Yu, KOU Su-Peng. Quantum Fidelity and Thermal Phase Transitions in a Two-Dimensional Spin System[J]. Chin. Phys. Lett., 2012, 29(12): 020503
[8] Dong-Xue Wang, Jing Fu, Yi Li, Zhen Yao, Shuang Liu, and Bing-Bing Liu. Interception of Layered LP-N and HLP-N at Ambient Conditions by Confined Template[J]. Chin. Phys. Lett., 2024, 41(3): 020503
[9] Zhi-Wen Chang, Wei-Chang Hao, Miguel Bustamante, and Xin Liu. Constructing Hopf Insulator from Geometric Perspective of Hopf Invariant[J]. Chin. Phys. Lett., 2024, 41(3): 020503
Viewed
Full text


Abstract