FUNDAMENTAL AREAS OF PHENOMENOLOGY(INCLUDING APPLICATIONS) |
|
|
|
|
Optical Mode Entanglement Generation from an Optomechanical Nanobeam |
Qi-Zhi Cai1,3†, Bo-Yu Fan1,2,6†*, Yun-Ru Fan1,3, Guang-Wei Deng1,3, You Wang1,4, Hai-Zhi Song1,4, Guang-Can Guo1,2,3,5,6, and Qiang Zhou1,2,3,5,6* |
1Institute of Fundamental and Frontier Sciences, University of Electronic Science and Technology of China, Chengdu 611731, China 2Center for Quantum Internet, Tianfu Jiangxi Laboratory, Chengdu 641419, China 3Key Laboratory of Quantum Physics and Photonic Quantum Information (Ministry of Education), University of Electronic Science and Technology of China, Chengdu 611731, China 4Southwest Institute of Technical Physics, Chengdu 610041, China 5CAS Key Laboratory of Quantum Information, University of Science and Technology of China, Hefei 230026, China 6Jiangxi Research Institute, University of Electronic Science and Technology of China, Chengdu 641419, China
|
|
Cite this article: |
Qi-Zhi Cai, Bo-Yu Fan, Yun-Ru Fan et al 2024 Chin. Phys. Lett. 41 114201 |
|
|
Abstract Nano-optomechanical systems, capable of supporting enhanced light-matter interactions, have wide applications in studying quantum entanglement and quantum information processors. Yet, preparing optical telecom-band entanglement within a single optomechanical nanobeam remains blank. We propose and design a triply resonant optomechanical nanobeam to generate steady-state entangled propagating optical modes and present its quantum-enhanced performance for teleportation-based quantum state transfer under realistic conditions. Remarkably, the entanglement quantified by logarithmic negativity can obtain $E_{\scriptscriptstyle{\rm N}}=1$. Furthermore, with structural imperfections induced by realistic fabrication processes considered, the device still shows great robustness. Together with quantum interfaces between mechanical motion and solid-state qubit processors, the proposed device potentially paves the way for versatile nodes in long-distance quantum networks.
|
|
Received: 11 July 2024
Published: 04 November 2024
|
|
PACS: |
42.50.Dv
|
(Quantum state engineering and measurements)
|
|
42.65.Lm
|
(Parametric down conversion and production of entangled photons)
|
|
03.65.Ud
|
(Entanglement and quantum nonlocality)
|
|
03.67.Mn
|
(Entanglement measures, witnesses, and other characterizations)
|
|
|
|
|
[1] | Horodecki R, Horodecki P, Horodecki M, and Horodecki K 2009 Rev. Mod. Phys. 81 865 | [2] | Wei S H, Jing B, Zhang X Y, Liao J Y, Yuan C Z, Fan B Y, Lyu C, Zhou D L, Wang Y, Deng G W, Song H Z, Oblak D, Guo G C, and Zhou Q 2022 Laser & Photonics Rev. 16 2100219 | [3] | Andersen U L, Gehring T, Marquardt C, and Leuchs G 2016 Phys. Scr. 91 053001 | [4] | Furusawa A, Sorensen J, Braunstein S, Fuchs C, Kimble H, and Polzik E 1998 Science 282 706 | [5] | Braunstein S L and Kimble H J 1998 Phys. Rev. Lett. 80 869 | [6] | Hao S H, Shi H W, Li W, Shapiro J H, Zhuang Q T, and Zhang Z S 2021 Phys. Rev. Lett. 126 250501 | [7] | Menicucci N C, van Loock P, Gu M L, Weedbrook C, Ralph T C, and Nielsen M A 2006 Phys. Rev. Lett. 97 110501 | [8] | Ukai R, Iwata N, Shimokawa Y, Armstrong S C, Politi A, Yoshikawa J I, van Loock P, and Furusawa A 2011 Phys. Rev. Lett. 106 240504 | [9] | Yokoyama S, Ukai R, Armstrong S C, Sornphiphatphong C, Kaji T, Suzuki S, Yoshikawa J I, Yonezawa H, Menicucci N C, and Furusawa A 2013 Nat. Photonics 7 982 | [10] | Aoki T, Takahashi G, Kajiya T, Yoshikawa J i, Braunstein S L, van Loock P, and Furusawa A 2009 Nat. Phys. 5 541 | [11] | Lassen M, Sabuncu M, Huck A, Niset J, Leuchs G, Cerf N J, and Andersen U L 2010 Nat. Photonics 4 700 | [12] | Tan S H, Erkmen B I, Giovannetti V, Guha S, Lloyd S, Maccone L, Pirandola S, and Shapiro J H 2008 Phys. Rev. Lett. 101 253601 | [13] | Zhang Z S, Mouradian S, Wong F N C, and Shapiro J H 2015 Phys. Rev. Lett. 114 110506 | [14] | Zhuang Q 2021 Phys. Rev. Lett. 126 240501 | [15] | Zhuang Q T and Shapiro J H 2022 Phys. Rev. Lett. 128 010501 | [16] | Aspelmeyer M, Kippenberg T J, and Marquardt F 2014 Rev. Mod. Phys. 86 1391 | [17] | Barzanjeh S, Xuereb A, Gröblacher S, Paternostro M, Regal C A, and Weig E M 2022 Nat. Phys. 18 15 | [18] | Rogers B, Lo Gullo N, De Chiara G, Palma G M, and Paternostro M 2014 Quantum Meas. Quantum Metrol. 2 11 | [19] | Kurizki G, Bertet P, Kubo Y, Mølmer K, Petrosyan D, Rabl P, and Schmiedmayer J 2015 Proc. Natl. Acad. Sci. USA 112 3866 | [20] | Barzanjeh S, Redchenko E S, Peruzzo M, Wulf M, Lewis D P, Arnold G, and Fink J M 2019 Nature 570 480 | [21] | Chen J, Rossi M, Mason D, and Schliesser A 2020 Nat. Commun. 11 943 | [22] | Palomaki T A, Teufel J D, Simmonds R W, and Lehnert K W 2013 Science 342 710 | [23] | Ockeloen-Korppi C F, Damskägg E, Pirkkalainen J M, Asjad M, Clerk A A, Massel F, Woolley M J, and Sillanpää M A 2018 Nature 556 478 | [24] | Kotler S, Peterson G A, Shojaee E, Lecocq F, Cicak K, Kwiatkowski A, Geller S, Glancy S, Knill E, Simmonds R W, Aumentado J, and Teufel J D 2021 Science 372 622 | [25] | Vitali D, Gigan S, Ferreira A, Böhm H R, Tombesi P, Guerreiro A, Vedral V, Zeilinger A, and Aspelmeyer M 2007 Phys. Rev. Lett. 98 030405 | [26] | Paternostro M, Vitali D, Gigan S, Kim M S, Brukner C, Eisert J, and Aspelmeyer M 2007 Phys. Rev. Lett. 99 250401 | [27] | Tian L 2013 Phys. Rev. Lett. 110 233602 | [28] | Wang Y D and Clerk A A 2013 Phys. Rev. Lett. 110 253601 | [29] | Ho M, Oudot E, Bancal J D, and Sangouard N 2018 Phys. Rev. Lett. 121 023602 | [30] | Yu H C, McCuller L, Tse M et al. 2020 Nature 583 43 | [31] | Midolo L, Schliesser A, and Fiore A 2018 Nat. Nanotechnol. 13 11 | [32] | Chu Y and Gröblacher S 2020 Appl. Phys. Lett. 117 150503 | [33] | Xu N, Cheng Z D, Tang J D, Lv X M, Li T, Guo M L, Wang Y, Song H Z, Zhou Q, and Deng G W 2021 Nanophotonics 10 2265 | [34] | González-Tudela A, Reiserer A, García-Ripoll J J, and García-Vidal F J 2024 Nat. Rev. Phys. 6 166 | [35] | Hill J T, Safavi-Naeini A H, Chan J, and Painter O 2012 Nat. Commun. 3 1196 | [36] | Buckley S, Radulaski M, Zhang J L, Petykiewicz J, Biermann K, and Vučković J 2014 Opt. Express 22 26498 | [37] | Grutter K E, Davanço M I, and Srinivasan K 2015 Optica 2 994 | [38] | Sun F, Yang Y, Li Z, Yang D, Tian H, and Lee C 2022 Opt. Express 30 21764 | [39] | Wu N, Cui K, Xu Q, Feng X, Liu F, Zhang W, and Huang Y 2023 Sci. Adv. 9 eabp8892 | [40] | Primo A G, Pinho P V, Benevides R, Gröblacher S, Wiederhecker G S, and Alegre T P M 2023 Nat. Commun. 14 5793 | [41] | Wu N, Cui K, Feng X, Liu F, Zhang W, and Huang Y 2022 Photonics 9 78 | [42] | Braunstein S L, Fuchs C A, Kimble H J, and van Loock P 2001 Phys. Rev. A 64 022321 | [43] | Rueda A, Hease W, Barzanjeh S, and Fink J M 2019 npj Quantum Inf. 5 108 | [44] | Yamaguchi Y, Jeon S W, Song B S, Tanaka Y, Asano T, and Noda S 2015 J. Opt. Soc. Am. B 32 1792 | [45] | See the Supplementary Material for (i) derivation of the Hamiltonian and dynamics of the system, (ii) covariance matrix of the output optical fields, (iii) entanglement measures of the output optical fields, (iv) robustness of the entanglement against temperature, (v) fidelity of teleportationbased quantum state transfer, (vi) device designs with structural imperfections, (vii) mathematical derivation of the changes of the stable region, (vii) schematic experimental setup. | [46] | Barzanjeh S, Abdi M, Milburn G J, Tombesi P, and Vitali D 2012 Phys. Rev. Lett. 109 130503 | [47] | Cai Q, Fan B, Fan Y, Deng G, Wang Y, Song H, Guo G, and Zhou Q 2023 Phys. Rev. A 108 022419 | [48] | Quan Q and Loncar M 2011 Opt. Express 19 18529 | [49] | Fan B, Lv X, Tang T, Deng G, Wang Y, Song H, and Zhou Q 2021 OSA Continuum 4 2998 | [50] | MacCabe G S, Ren H J, Luo J, Cohen J D, Zhou H Y, Sipahigil A, Mirhosseini M, and Painter O 2020 Science 370 840 | [51] | Bemani F, Roknizadeh R, Motazedifard A, Naderi M H, and Vitali D 2019 Phys. Rev. A 99 063814 | [52] | Barzanjeh S, Guha S, Weedbrook C, Vitali D, Shapiro J H, and Pirandola S 2015 Phys. Rev. Lett. 114 080503 | [53] | Cai Q, Liao J, Shen B, Guo G, and Zhou Q 2021 Phys. Rev. A 103 052419 | [54] | Rueda A 2021 Phys. Rev. A 103 023708 | [55] | Pirandola S, Spedalieri G, Braunstein S L, Cerf N J, and Lloyd S 2014 Phys. Rev. Lett. 113 140405 | [56] | Weedbrook C, Pirandola S, García-Patrón R, Cerf N J, Ralph T C, Shapiro J H, and Lloyd S 2012 Rev. Mod. Phys. 84 621 | [57] | Weedbrook C, Pirandola S, Thompson J, Vedral V, and Gu M 2016 New J. Phys. 18 043027 | [58] | Pirandola S, Eisert J, Weedbrook C, Furusawa A, and Braunstein S L 2015 Nat. Photonics 9 641 | [59] | Sahu R, Qiu L, Hease W, Arnold G, Minoguchi Y, Rabl P, and Fink J M 2023 Science 380 718 | [60] | Lauk N, Sinclair N, Barzanjeh S, Covey J P, Saffman M, Spiropulu M, and Simon C 2020 Quantum Sci. Technol. 5 020501 | [61] | Mirhosseini M, Sipahigil A, Kalaee M, and Painter O 2020 Nature 588 599 | [62] | Arnold G, Wulf M, Barzanjeh S, Redchenko E S, Rueda A, Hease W J, Hassani F, and Fink J M 2020 Nat. Commun. 11 4460 | [63] | Jiang W T, Sarabalis C J, Dahmani Y D, Patel R N, Mayor F M, McKenna T P, Van Laer R, and Safavi-Naeini A H 2020 Nat. Commun. 11 1166 | [64] | Weaver M J, Duivestein P, Bernasconi A C, Scharmer S, Lemang M, Thiel T C V, Hijazi F, Hensen B, Gröblacher S, and Stockill R 2023 Nat. Nanotechnol. 19 166 |
|
|
Viewed |
|
|
|
Full text
|
|
|
|
|
Abstract
|
|
|
|
|