Chin. Phys. Lett.  2024, Vol. 41 Issue (11): 113702    DOI: 10.1088/0256-307X/41/11/113702
ATOMIC AND MOLECULAR PHYSICS |
Manipulation of High-Fidelity Sidebands under Large Detuning by Floquet Technology: Application to Multi-Mode Cooling
Xue-Ying Yang1, Zi-Dong Lin2, Shu-Ying Mu1, Wei Wu1, Chun-Wang Wu1, Yi Xie1, and Ping-Xing Chen1*
1Institute for Quantum Science and Technology, College of Sciences, National University of Defense Technology, Changsha 410073, China
2Shenzhen Institute for Quantum Science and Engineering and Department of Physics, Southern University of Science and Technology, Shenzhen 518055, China
Cite this article:   
Xue-Ying Yang, Zi-Dong Lin, Shu-Ying Mu et al  2024 Chin. Phys. Lett. 41 113702
Download: PDF(2141KB)   PDF(mobile)(2186KB)   HTML
Export: BibTeX | EndNote | Reference Manager | ProCite | RefWorks
Abstract The Floquet technology, a powerful way to manipulate quantum states, is employed to drive sidebands transition under large detuning. Our results demonstrate that high fidelities over $99\%$ can be achieved through optimizing suitable modulation frequencies under large detuning. We observe high-fidelity transitions within a high bandwidth by utilizing a single modulation frequency and reveal that this capability is due to the emergence of a flat-band structure in the bandwidth range. The key finding of high-fidelity sideband manipulation under large detuning is experimentally confirmed in nuclear magnetic resonance platform. Finally, we propose a new parallel sideband cooling scheme that enables simultaneous cooling of multiple motional modes. This approach improves the cooling rate compared to conventional schemes with fixed laser frequency and power, and eliminates the need for mode-specific addressing. Our Floquet parallel scheme is applicable to any harmonic oscillator system and is not limited by bandwidth in theory.
Received: 19 September 2024      Published: 11 November 2024
PACS:  37.10.Ty (Ion trapping)  
  37.10.De (Atom cooling methods)  
  42.50.Dv (Quantum state engineering and measurements)  
TRENDMD:   
URL:  
https://cpl.iphy.ac.cn/10.1088/0256-307X/41/11/113702       OR      https://cpl.iphy.ac.cn/Y2024/V41/I11/113702
Service
E-mail this article
E-mail Alert
RSS
Articles by authors
Xue-Ying Yang
Zi-Dong Lin
Shu-Ying Mu
Wei Wu
Chun-Wang Wu
Yi Xie
and Ping-Xing Chen
[1] Pino J M, Dreiling J M, Figgatt C, Gaebler J P, Moses S A, Allman M S, Baldwin C H, Foss-Feig M, Hayes D, Mayer K, Ryan-Anderson C, and Neyenhuis B 2021 Nature 592 209
[2] Wright K, Beck K M, Debnath S, Amini J M, Nam Y, Grzesiak N, Chen J S, Pisenti N C, Chmielewski M, Collins C, Hudek K M, Mizrahi J, Wong-Campos J D, Allen S, Apisdorf J, Solomon P, Williams M, Ducore A M, Blinov A, Kreikemeier S M, Chaplin V, Keesan M, Monroe C, and Kim J 2019 Nat. Commun. 10 5464
[3] Blatt R and Roos C F 2012 Nat. Phys. 8 277
[4] Monroe C, Campbell W C, Duan L M, Gong Z X, Gorshkov A V, Hess P W, Islam R, Kim K, Linke N M, Pagano G, Richerme P, Senko C, and Yao N Y 2021 Rev. Mod. Phys. 93 025001
[5] Xie H, Yin H, and Fan C 2024 Chin. Phys. Lett. 41 044202
[6] Ludlow A D, Boyd M M, Ye J, Peik E, and Schmidt P O 2015 Rev. Mod. Phys. 87 637
[7] Huntemann N, Sanner C, Lipphardt B, Tamm C, and Peik E 2016 Phys. Rev. Lett. 116 063001
[8] Brewer S M, Chen J S, Hankin A M, Clements E R, Chou C W, Wineland D J, Hume D B, and Leibrandt D R 2019 Phys. Rev. Lett. 123 033201
[9] Lu Y, Zhang R, Song C, Chen C, Si R, and Ning C 2023 Chin. Phys. Lett. 40 093101
[10] Degen C L, Reinhard F, and Cappellaro P 2017 Rev. Mod. Phys. 89 035002
[11] Teufel J D, Donner T, Li D, Harlow J W, Allman M S, Cicak K, Sirois A J, Whittaker J D, Lehnert K W, and Simmonds R W 2011 Nature 475 359
[12] Whittle C, Hall E D, Dwyer S et al. 2021 Science 372 1333
[13] Wineland D J and Itano W M 1979 Phys. Rev. A 20 1521
[14] Stenholm S 1986 Rev. Mod. Phys. 58 699
[15] Dalibard J and Cohen-Tannoudji C 1989 J. Opt. Soc. Am. B 6 2023
[16] Mao Z C, Xu Y Z, Mei Q X, Zhao W D, Jiang Y, Wang Y, Chang X Y, He L, Yao L, Zhou Z C, Wu Y K, and Duan L M 2021 Phys. Rev. Lett. 127 143201
[17] Joshi M K, Fabre A, Maier C, Brydges T, Kiesenhofer D, Hainzer H, Blatt R, and Roos C F 2020 New J. Phys. 22 103013
[18] Ejtemaee S and Haljan P C 2017 Phys. Rev. Lett. 119 043001
[19] Morigi G, Eschner J, and Keitel C H 2000 Phys. Rev. Lett. 85 4458
[20] Roos C F, Leibfried D, Mundt A, Schmidt-Kaler F, Eschner J, and Blatt R 2000 Phys. Rev. Lett. 85 5547
[21] Lechner R, Maier C, Hempel C, Jurcevic P, Lanyon B P, Monz T, Brownnutt M, Blatt R, and Roos C F 2016 Phys. Rev. A 93 053401
[22] Diedrich F, Bergquist J C, Itano W M, and Wineland D J 1989 Phys. Rev. Lett. 62 403
[23] Roos C, Zeiger T, Rohde H, Nägerl H C, Eschner J, Leibfried D, Schmidt-Kaler F, and Blatt R 1999 Phys. Rev. Lett. 83 4713
[24] Monroe C, Meekhof D M, King B E, Jefferts S R, Itano W M, Wineland D J, and Gould P 1995 Phys. Rev. Lett. 75 4011
[25]Wineland D, Monroe C, Itano W, Leibfried D, King B, and Meekhof D 1998 J. Res. Natl. Inst. Stand. Technol. 103 259
[26] Chen J S, Wright K, Pisenti N C, Murphy D, Beck K M, Landsman K, Amini J M, and Nam Y 2020 Phys. Rev. A 102 043110
[27] Huang Z, Mundada P S, Gyenis A, Schuster D I, Houck A A, and Koch J 2021 Phys. Rev. Appl. 15 034065
[28] Gandon A, Le Calonnec C, Shillito R, Petrescu A, and Blais A 2022 Phys. Rev. Appl. 17 064006
[29] Deng C, Orgiazzi J L, Shen F, Ashhab S, and Lupascu A 2015 Phys. Rev. Lett. 115 133601
[30] Deng C, Shen F, Ashhab S, and Lupascu A 2016 Phys. Rev. A 94 032323
[31] Wu J L, Wang Y, Han J X, Su S L, Xia Y, Jiang Y, and Song J 2021 Phys. Rev. A 103 012601
[32] Eckardt A 2017 Rev. Mod. Phys. 89 011004
[33] Roy R and Harper F 2017 Phys. Rev. B 96 155118
[34] Peng Y and Refael G 2019 Phys. Rev. Lett. 123 016806
[35] Wintersperger K, Braun C, Ünal F N, Eckardt A, Liberto M D, Goldman N, Bloch I, and Aidelsburger M 2020 Nat. Phys. 16 1058
[36] Peng P, Yin C, Huang X, Ramanathan C, and Cappellaro P 2021 Nat. Phys. 17 444
[37] Yin C, Peng P, Huang X, Ramanathan C, and Cappellaro P 2021 Phys. Rev. B 103 054305
[38] Rechtsman M C, Zeuner J M, Plotnik Y, Lumer Y, Podolsky D, Dreisow F, Nolte S, Segev M, and Szameit A 2013 Nature 496 196
[39] Jotzu G, Messer M, Desbuquois R, Lebrat M, Uehlinger T, Greif D, and Esslinger T 2014 Nature 515 237
[40] Jiménez-García K, LeBlanc L J, Williams R A, Beeler M C, Qu C, Gong M, Zhang C, and Spielman I B 2015 Phys. Rev. Lett. 114 125301
[41] Huang A, Ke S, Guan J H, Li J, and Lou W K 2024 Chin. Phys. Lett. 41 097302
[42] Liu Z R, Chen R, and Zhou B 2024 Chin. Phys. Lett. 41 047102
[43] Bloch F and Siegert A 1940 Phys. Rev. 57 522
[44] Shirley J H 1965 Phys. Rev. 138 B979
[45] Wilkason T, Nantel M, Rudolph J, Jiang Y, Garber B E, Swan H, Carman S P, Abe M, and Hogan J M 2022 Phys. Rev. Lett. 129 183202
[46] Wang G, Li C, and Cappellaro P 2021 Phys. Rev. Lett. 127 140604
[47] Hou S Y, Feng G, Wu Z, Zou H, Shi W, Zeng J, Cao C, Yu S, Sheng Z, Rao X, Ren B, Lu D, Zou J, Miao G, Xiang J, and Zeng B 2021 EPJ Quantum Technol. 8 20
[48] Feng G R, Hou S Y, Zou H Y, Shi W, Yu S, Sheng Z K, Rao X, Ma K H, Chen C X, Ren B, Miao G X, Xiang J G, and Zeng B 2022 IEEE Nanotechnol. Mag. 16 20
[49] Zalka C 1998 Fortschr. Phys. 46 877
[50] Cory D G, Fahmy A F, and Havel T F 1997 Proc. Natl. Acad. Sci. USA 94 1634
[51] Zhang J, Zhang M C, Xie Y, Wu C W, Ou B Q, Chen T, Bao W S, Haljan P, Wu W, Zhang S, and Chen P X 2022 Phys. Rev. Appl. 18 014022
Related articles from Frontiers Journals
[1] Xiao Song, Teng Liu, Ji Bian, Pengfei Lu, Yang Liu, Feng Zhu, and Le Luo. Non-Hermitian CHSH$^*$ Game with a Single Trapped-Ion Qubit[J]. Chin. Phys. Lett., 2024, 41(6): 113702
[2] Hong-Ling Yue, Hu Shao, Zheng Chen, Peng-Cheng Fang, Meng-Yan Zeng, Bao-Lin Zhang, Yao Huang, Ji-Guang Li, Qun-Feng Chen, Hua Guan, and Ke-Lin Gao. Isotope-Shift Measurement of Bosonic Yb$^{+}$ Ions[J]. Chin. Phys. Lett., 2023, 40(9): 113702
[3] Peng-Peng Zhou, Shao-Long Chen, Shi-Yong Liang, Wei Sun, Huan-Yao Sun, Yao Huang, Hua Guan, and Ke-Lin Gao. Significantly Improving the Escape Time of a Single $^{40}$Ca$^+$ Ion in a Linear Paul Trap by Fast Switching of the Endcap Voltage[J]. Chin. Phys. Lett., 2020, 37(9): 113702
[4] Y.-K. Wu  and L.-M. Duan. A Two-Dimensional Architecture for Fast Large-Scale Trapped-Ion Quantum Computing[J]. Chin. Phys. Lett., 2020, 37(7): 113702
[5] Ji Li, Liang Chen, Yi-He Chen, Zhi-Chao Liu, Hang Zhang, Mang Feng. Three-Dimensional Compensation for Minimizing Heating of the Ion in Surface-Electrode Trap[J]. Chin. Phys. Lett., 2020, 37(5): 113702
[6] Hai-Xia Li, Min Li, Qian-Yu Zhang, Xin Tong. Secular Motion Frequencies of $^{9}$Be$^{+}$ Ions and $^{40}$Ca$^{+}$ Ions in Bi-component Coulomb Crystals[J]. Chin. Phys. Lett., 2019, 36(7): 113702
[7] Meng-Yan Zeng, Yao Huang, Hu Shao, Miao Wang, Hua-Qing Zhang, Bao-Lin Zhang, Hua Guan, Ke-Lin Gao. Improvement of Stability of $^{40}$Ca$^{+}$ Optical Clock with State Preparation[J]. Chin. Phys. Lett., 2018, 35(7): 113702
[8] Jiu-Zhou He, Lei-Lei Yan, Liang Chen, Ji Li, Mang Feng. Measurement of Heating Rates in a Microscopic Surface-Electrode Ion Trap[J]. Chin. Phys. Lett., 2017, 34(6): 113702
[9] Jie Zhang, Ke Deng, Jun Luo, Ze-Huang Lu. Direct Laser Cooling Al$^+$ Ion Optical Clocks[J]. Chin. Phys. Lett., 2017, 34(5): 113702
[10] Jun-Juan Shang, Kai-Feng Cui, Jian Cao, Shao-Mao Wang, Si-Jia Chao, Hua-Lin Shu, Xue-Ren Huang. Sympathetic Cooling of $^{40}$Ca$^+$–$^{27}$Al$^+$ Ion Pair Crystal in a Linear Paul Trap[J]. Chin. Phys. Lett., 2016, 33(10): 113702
[11] Zhi-Hui Yang, Hao Liu, Yue-Hong He, Man Wang, Yong-Quan Wan, Yi-He Chen, Lei She, Jiao-Mei Li. Optimal Microwave Radiation Field Parameters for Mercury Ion Microwave Frequency Standards[J]. Chin. Phys. Lett., 2016, 33(06): 113702
[12] CHEN Ting, DU Li-Jun, SONG Hong-Fang, LIU Pei-Liang, HUANG Yao, TONG Xin, GUAN Hua, GAO Ke-Lin. Preparation of Ultracold Li+ Ions by Sympathetic Cooling in a Linear Paul Trap[J]. Chin. Phys. Lett., 2015, 32(08): 113702
[13] ZHANG Jian-Wei, MIAO Kai, WANG Li-Jun. Dick Effect in a Microwave Frequency Standard Based on Laser-Cooled 113Cd+ Ions[J]. Chin. Phys. Lett., 2015, 32(01): 113702
[14] LIU Wei, CHEN Shu-Ming, CHEN Ping-Xing, WU Wei. Design Optimization for Anharmonic Linear Surface-Electrode Ion Trap[J]. Chin. Phys. Lett., 2014, 31(11): 113702
[15] LIU Pei-Liang, HUANG Yao, BIAN Wu, SHAO Hu, QIAN Yuan, GUAN Hua, GAO Ke-Lin. Preliminary Frequency Comparison of Two 40Ca+ Optical Frequency Standards[J]. Chin. Phys. Lett., 2014, 31(11): 113702
Viewed
Full text


Abstract